Glucose utilization, pH reduction and density dependent inhibition in cultures of chick embryo fibroblasts. 1975

D W Fodge, and H Rubin

The multiplication rate of sparse cultures of chick embryo cells is only slightly lower at pH 6.9 than at pH 7.4. There is, however, a marked reduction in the multiplication rate of the pH 6.9 cultures before they reach confluency. Cultures at pH 7.4 continue to multiply beyond confluency with only a slight decrease in the multiplication rate. Eighty to ninety percent of the glucose taken up by the cells growing at each pH is converted to lactic acid which is released into the medium. Metabolic reduction in pH of the medium is almost entirely accounted for by the amount of lactic acid produced by the cells. Neither the intracellular nor extracellular accumulation of lactic acid nor the accompanying reduction in pH is sufficient to explain density dependent inhibition of the rate of multiplication of chick cells. The rate of lactic acid production and the multiplication rate of chick cells are independent of glucose concentration in the range of 2--16 mM. In view of the kinetic parameters for the uptake of glucose, this shows that glycolysis is not limited by the rate of glucose uptake and that depletion of glucose from the medium cannot account for the onset of density dependent inhibition of multiplication. However, when cells reach very high population densities, conventional glucose concentrations of 5 mM can be depleted overnight by chick cells. Since the multiplication rate of cells is dependent on glucose concentration when it falls below 2 mM, depletion of glucose may cause some growth inhibition in crowded cultures supplied with conventional medium.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003260 Contact Inhibition Arrest of cell locomotion or cell division when two cells come into contact. Inhibition, Contact,Contact Inhibitions,Inhibitions, Contact
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D W Fodge, and H Rubin
December 1975, Journal of cellular physiology,
D W Fodge, and H Rubin
May 1981, Journal of cellular physiology,
D W Fodge, and H Rubin
December 1971, Proceedings of the National Academy of Sciences of the United States of America,
D W Fodge, and H Rubin
March 1961, Antibiotiki,
D W Fodge, and H Rubin
January 1974, Fiziolohichnyi zhurnal,
D W Fodge, and H Rubin
September 1964, The Journal of general physiology,
D W Fodge, and H Rubin
March 1969, Proceedings of the National Academy of Sciences of the United States of America,
D W Fodge, and H Rubin
April 1969, Journal of bacteriology,
Copied contents to your clipboard!