Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. 2013

Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
Department of Pharmacology, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China. wsgwz77@gmail.com

Protein‑coding genes and small non‑coding microRNAs involved in the guidance of differentiation in mesenchymal stem cells (MSCs) into osteoblasts have been extensively investigated in previous studies. However, long non‑coding RNAs (lncRNAs), which account for a large proportion of the genomic sequences in numerous species, have not yet been reported. In the present study, the lncRNA expression profile was analyzed using the Arraystar lncRNA array in C3H10T1/2 MSCs undergoing early osteoblast differentiation and 116 differentially expressed lncRNAs were identified between BMP‑2 treated and untreated groups. Among these lncRNAs, 59 were upregulated and 57 were downregulated in BMP‑2 treated groups. In addition, 24 cooperatively differentially expressed lncRNAs and nearby mRNA pairs were found. For example, mouselincRNA0231 and its nearby gene, EGFR, were downregulated, while lncRNA NR_027652 and its nearby gene, DLK1, were upregulated. These observations may be part of the regulatory mechanisms of lncRNAs in the control of osteoblast differentiaton. In conclusion, results of the present study indicate that lncRNA expression profiles are significantly altered in C3H10T1/2 undergoing early osteoblast differentiation and these results may provide insight into the mechanisms responsible for osteoblast differentiation.

UI MeSH Term Description Entries
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053263 Gene Regulatory Networks Interacting DNA-encoded regulatory subsystems in the GENOME that coordinate input from activator and repressor TRANSCRIPTION FACTORS during development, cell differentiation, or in response to environmental cues. The networks function to ultimately specify expression of particular sets of GENES for specific conditions, times, or locations. Gene Circuits,Gene Modules,Gene Networks,Transcriptional Networks,Gene Module,Circuit, Gene,Circuits, Gene,Gene Circuit,Gene Network,Gene Regulatory Network,Module, Gene,Modules, Gene,Network, Gene,Network, Gene Regulatory,Network, Transcriptional,Networks, Gene,Networks, Gene Regulatory,Networks, Transcriptional,Regulatory Network, Gene,Regulatory Networks, Gene,Transcriptional Network
D055396 Bone Morphogenetic Protein 2 A potent osteoinductive protein that plays a critical role in the differentiation of osteoprogenitor cells into OSTEOBLASTS.
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells

Related Publications

Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
March 2016, BMB reports,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
February 2024, Intractable & rare diseases research,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
January 2014, Zeitschrift fur Naturforschung. C, Journal of biosciences,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
January 2021, Stem cells international,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
June 2017, Life sciences,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
April 2012, Differentiation; research in biological diversity,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
June 2017, European journal of medical genetics,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
October 2005, Stem cells (Dayton, Ohio),
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
July 2016, Molecular medicine reports,
Changqing Zuo, and Zonggui Wang, and Hanyun Lu, and Zhong Dai, and Xinguang Liu, and Liao Cui
March 2007, BMC genomics,
Copied contents to your clipboard!