Mouse prostate epithelial luminal cells lineage originate in the basal layer where the primitive stem/early progenitor cells reside: implications for identifying prostate cancer stem cells. 2013

Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.

Prostate stem cells are thought to be responsible for generation of all prostate epithelial cells and for tissue maintenance. The lineage relationship between basal and luminal cells in the prostate is not well clarified. We developed a mouse model to trace cell fate and a mouse model with a slowly cycling cell label to provide insight into this question. The results obtained indicate that putative mouse prostate stem cells are likely to reside in the basal layer.

UI MeSH Term Description Entries
D008297 Male Males
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014411 Neoplastic Stem Cells Highly proliferative, self-renewing, and colony-forming stem cells which give rise to NEOPLASMS. Cancer Stem Cells,Colony-Forming Units, Neoplastic,Stem Cells, Neoplastic,Tumor Stem Cells,Neoplastic Colony-Forming Units,Tumor Initiating Cells,Cancer Stem Cell,Cell, Cancer Stem,Cell, Neoplastic Stem,Cell, Tumor Initiating,Cell, Tumor Stem,Cells, Cancer Stem,Cells, Neoplastic Stem,Cells, Tumor Initiating,Cells, Tumor Stem,Colony Forming Units, Neoplastic,Colony-Forming Unit, Neoplastic,Initiating Cell, Tumor,Initiating Cells, Tumor,Neoplastic Colony Forming Units,Neoplastic Colony-Forming Unit,Neoplastic Stem Cell,Stem Cell, Cancer,Stem Cell, Neoplastic,Stem Cell, Tumor,Stem Cells, Cancer,Stem Cells, Tumor,Tumor Initiating Cell,Tumor Stem Cell,Unit, Neoplastic Colony-Forming,Units, Neoplastic Colony-Forming
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent

Related Publications

Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
September 2010, Cell stem cell,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
May 2009, PloS one,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
January 2014, American journal of clinical and experimental urology,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
September 2011, Current eye research,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
November 2018, Trends in cancer,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
November 2011, Molecular endocrinology (Baltimore, Md.),
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
January 2007, Molecular carcinogenesis,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
June 2012, Stem cells (Dayton, Ohio),
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
February 2010, Proceedings of the National Academy of Sciences of the United States of America,
Jianjun Zhou, and Lionel Feigenbaum, and Carole Yee, and Hongbin Song, and Clayton Yates
February 2011, Hormones & cancer,
Copied contents to your clipboard!