Loss of cAMP/CRP regulation confers extreme high hydrostatic pressure resistance in Escherichia coli O157:H7. 2013

Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 22, Leuven B-3001, Belgium.

Application of high hydrostatic pressure (HHP) constitutes a valuable non-thermal pasteurization process in modern food conservation. Triggered by our interest in the rapid adaptive evolution towards HHP resistance in the food-borne pathogen E. coli O157:H7 (strain ATCC 43888) that was demonstrated earlier, we used genetic screening to identify specific loci in which a loss-of-function mutation would be sufficient to markedly increase HHP survival. As such, individual loss of RssB (anti RpoS-factor), CRP (catabolite response protein) and CyaA (adenylate cyclase) were each found to confer significant HHP resistance in the 300MPa range (i.e. >1,000-fold), and this phenotype invariably coincided with increased resistance against heat as well. In contrast to loss of RssB, however, loss of CRP or CyaA also conferred significantly increased resistance to 600MPa (i.e. >10,000-fold), suggesting cAMP/CRP homeostasis to affect extreme HHP resistance independently of increased RpoS activity. Surprisingly, none of the rapidly emerging HHP-resistant mutants of ATCC 43888 that were isolated previously did incur any mutations in rssB, crp or cyaA, indicating that a number of other loci can guide the rapid emergence of HHP resistance in E. coli O157:H7 as well. The inability of spontaneous rssB, crp or cyaA mutants to emerge during selective enrichment under HHP selection likely stems from their decreased competitive fitness during growth. Overall, this study is the first to shed light on the possible genetic strategies supporting the acquisition of HHP resistance in E. coli O157:H7.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015723 Gene Library A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences. DNA Library,cDNA Library,DNA Libraries,Gene Libraries,Libraries, DNA,Libraries, Gene,Libraries, cDNA,Library, DNA,Library, Gene,Library, cDNA,cDNA Libraries
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
November 2020, Metabolic engineering,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
October 2001, Applied and environmental microbiology,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
May 2019, Microorganisms,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
December 2021, Foods (Basel, Switzerland),
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
April 2006, Applied and environmental microbiology,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
October 2011, Food microbiology,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
December 2008, International journal of food microbiology,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
April 2013, International journal of food microbiology,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
August 2017, Scientific reports,
Dietrich Vanlint, and Brecht J Y Pype, and Nele Rutten, and Kristof G A Vanoirbeek, and Chris W Michiels, and Abram Aertsen
May 2010, Food microbiology,
Copied contents to your clipboard!