Chlamydia trachomatis infection of human fallopian tube organ cultures. 1990

M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield 62794-9230.

The pathogenic events that precede Chlamydia trachomatis salpingitis in the human fallopian tube have not been fully described. We used a model of human fallopian tubes in organ culture (HFTOC) infected with strain E/UW-5/CX of C. trachomatis to study these events. The model supported sustained C. trachomatis infection as demonstrated by recovery of viable C. trachomatis from medium and tissue over 5-7 d. However, the level of infectivity was low. Maximal infection occurred at 72 h after initial inoculation. In contrast to gonococcal infection of the HFTOC, C. trachomatis did not damage overall ciliary function of HFTOC. However, a local direct cytotoxic effect characterized by loss of microvilli and disruption of cell junctions was noted when multiple chlamydial elementary bodies attached to mucosal cells. Beginning at 24 h, and continuing throughout the course of C. trachomatis infection of HFTOC, ruptured epithelial cells releasing elementary bodies were noted. Chlamydial inclusions were seen in the mucosa by 72 h in approximately 6% of both ciliated and nonciliated epithelial cells. Mucosal inclusions contained all forms of the C. trachomatis developmental cycle. These data suggest that factors present in the human fallopian tube may limit susceptibility to chlamydial infection but support the use of the HFTOC model in the study of the pathogenesis of C. trachomatis salpingitis.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002690 Chlamydia Infections Infections with bacteria of the genus CHLAMYDIA. Infections, Chlamydia,Chlamydia Infection,Infection, Chlamydia
D002692 Chlamydia trachomatis Type species of CHLAMYDIA causing a variety of ocular and urogenital diseases.
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D005187 Fallopian Tubes A pair of highly specialized canals extending from the UTERUS to its corresponding OVARY. They provide the means for OVUM transport from the ovaries and they are the site of the ovum's final maturation and FERTILIZATION. The fallopian tube consists of an interstitium, an isthmus, an ampulla, an infundibulum, and fimbriae. Its wall consists of three layers: serous, muscular, and an internal mucosal layer lined with both ciliated and secretory cells. Oviducts, Mammalian,Salpinges, Uterine,Salpinx, Uterine,Uterine Salpinges,Uterine Salpinx,Fallopian Tube,Uterine Tubes,Mammalian Oviduct,Mammalian Oviducts,Oviduct, Mammalian,Tube, Fallopian,Tube, Uterine,Tubes, Fallopian,Tubes, Uterine,Uterine Tube
D005260 Female Females

Related Publications

M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
November 1996, American journal of obstetrics and gynecology,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
October 1986, European journal of clinical microbiology,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
November 2011, Gynecologie, obstetrique & fertilite,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
August 2020, Infection and immunity,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
December 2007, Cellular microbiology,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
August 2015, Contraception,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
December 1983, Fertility and sterility,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
January 1987, Antonie van Leeuwenhoek,
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
July 2007, Human reproduction (Oxford, England),
M D Cooper, and J Rapp, and C Jeffery-Wiseman, and R C Barnes, and D S Stephens
November 2002, American journal of obstetrics and gynecology,
Copied contents to your clipboard!