Muscarinic receptors mediating inhibition of gamma-aminobutyric acid release in rat corpus striatum and their pharmacological characterization. 1990

M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
Istituto di Farmacologia e Farmacognosia, Università degli Studi di Genova, Italy.

The effects of acetylcholine (ACh) and of cholinergic agonists on the release of tritiated gamma-aminobutyric acid ([3H]GABA) were studied in superfused synaptosomes prepared from rat corpus striatum and prelabeled with the radioactive amino acid. ACh, oxotremorine or (-)-nicotine, all tested at 100 microM had no effect on the spontaneous outflow of [3H]GABA. The depolarization-evoked overflow obtained by exposing the synaptosomes to 9 mM KCl was decreased in a concentration-dependent manner by ACh, oxotremorine, oxotremorine-M or carbachol. The maximal inhibition caused by ACh was 50%. The EC50 (agonist concentration causing half-maximal effect) amounted to 1 microM. Oxotremorine and oxotremorine-M were almost equipotent to ACh, whereas the concentration-response curve of carbachol was slightly (although not significantly) shifted to the right with respect to that of ACh. (-)-Nicotine (100 microM) did not affect the K(+)-evoked [3H]GABA overflow. ACh also inhibited the K(+)-evoked release of endogenous GABA. The inhibitory effect of 10 microM ACh on the release of [3H]GABA evoked by 9 mM KCl was insensitive to the nicotinic antagonist mecamylamine (10 microM) but it was potently blocked by the muscarinic antagonist atropine (IC50 = 5 nM) and weakly antagonized by pirenzepine, dicyclomine and AF-DX 116. The pharmacological profile of this receptor was very similar to that of the muscarinic autoreceptors regulating [3H]ACh release. The extent of [3H]GABA release inhibition caused by ACh did not differ between dorsal and ventral striatum. The inhibitory effect of ACh was much less pronounced in hippocampus and cortex than in the striatum.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D010095 Oxotremorine A non-hydrolyzed muscarinic agonist used as a research tool. Oxytremorine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
July 1970, Brain research,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
September 1988, The Journal of pharmacology and experimental therapeutics,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
April 1989, The Journal of pharmacology and experimental therapeutics,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
August 1985, Molecular pharmacology,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
January 1983, Journal of neural transmission,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
January 1988, Advances in experimental medicine and biology,
M Raiteri, and M Marchi, and P Paudice, and A Pittaluga
August 2005, The European journal of neuroscience,
Copied contents to your clipboard!