Effects of a Fusarium toxin-contaminated maize treated with sodium metabisulphite, methylamine and calcium hydroxide in diets for female piglets. 2013

Inga Rempe, and Ulrike Brezina, and Susanne Kersten, and Sven Dänicke
Institute of Animal Nutrition, Friedrich-Loeffler-Institute FLI, Federal Research Institute for Animal Health, Braunschweig, Germany.

Deoxynivalenol (DON) and zearalenone (ZEN) contaminated maize was hydrothermally treated in the presence of sodium metabisulphite (SBS), methylamine and calcium hydroxide (Ca(OH)2) and included into diets for female piglets to evaluate effects on performance, organ weights, development of hyperestrogenism, serum biochemical parameters, stimulation of peripheral blood mononuclear cells and toxin residues in serum. For this purpose, both uncontaminated maize (CON) and Fusarium toxin-contaminated maize (FUS) were included into diets either untreated (-) or treated (+) according to a 2 by 2-factorial design. One-hundred female weaned piglets were assigned to one of the four treatment groups (n = 25) CON-, CON+, FUS- and FUS+ with DON/ZEN concentrations of 0.43/0.03, 0.04/0.0, 3.67/0.32 and 0.36/0.08 mg per kg diet, respectively. After a feeding period of 27 days, 20 piglets (n = 5) were slaughtered. Performance parameters such as feed intake, live weight gain and feed-to-gain ratio remained unaffected by the treatments. Uterus weights were significantly reduced in group FUS+ compared to FUS- (p = 0.028), while visceral organ weights were not influenced. Vulva width in relation to body weight was highest in group FUS- at the end of the trial, while hydrothermal treatment significantly reduced the parameter (p < 0.01). The highest toxin and toxin metabolite concentrations in serum were detected in group FUS-, whereas ingestion of diet FUS+ reduced the concentrations to the level of the control groups. Serum biochemical and haematological parameters were mainly within the given reference ranges and showed no treatment-related alterations. Stimulation of peripheral blood mononuclear cells was not affected. An effective detoxification of maize by hydrothermal treatment in the presence of SBS, methylamine and Ca(OH)2 could be demonstrated by means of serum toxin analyses. No undesired side effects of the treated-feed stuff or the chemicals themselves on the health of piglets were detected.

UI MeSH Term Description Entries
D008744 Methylamines Derivatives of methylamine (the structural formula CH3NH2).
D002126 Calcium Hydroxide A white powder prepared from lime that has many medical and industrial uses. It is in many dental formulations, especially for root canal filling. Hydroxide, Calcium
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D005506 Food Contamination The presence in food of harmful, unpalatable, or otherwise objectionable foreign substances, e.g. chemicals, microorganisms or diluents, before, during, or after processing or storage. Food Adulteration,Adulteration, Food,Adulterations, Food,Contamination, Food,Contaminations, Food,Food Adulterations,Food Contaminations
D005670 Fusarium A mitosporic Hypocreales fungal genus, various species of which are important parasitic pathogens of plants and a variety of vertebrates. Teleomorphs include GIBBERELLA. Fusariums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional

Related Publications

Inga Rempe, and Ulrike Brezina, and Susanne Kersten, and Sven Dänicke
October 2003, Archiv fur Tierernahrung,
Inga Rempe, and Ulrike Brezina, and Susanne Kersten, and Sven Dänicke
October 2005, Journal of animal physiology and animal nutrition,
Inga Rempe, and Ulrike Brezina, and Susanne Kersten, and Sven Dänicke
March 2002, Mycotoxin research,
Inga Rempe, and Ulrike Brezina, and Susanne Kersten, and Sven Dänicke
March 2001, Mycotoxin research,
Copied contents to your clipboard!