[Autoinduction of differentiation in human myelocytic leukemia cells (HL-60-Y3)]. 1990

Y Kajigaya
Department of Pediatrics, Yokohama City University School of Medicine, Yokohama.

We conducted a study on autoinduction of differentiation in human myelocytic leukemia cells (HL-60-Y3) in which the effects of serum cytodifferentiation were excluded by the use of a serum-free semisolid culture. In the culture dish the HL-60-Y3 colony count per dish was kept at 100 or below, and only the formation of clumping-type colonies, which consisted of blastoid cells, was observed. The formation of spreading-type colonies increased with the colony count and when the colony count reached 500 per dish, more than 90% of the colonies formed were spreading-type colonies. The main component cells of the spreading-type colonies were mature monocytoid cells, which were positive for alpha-naphthyl butyrate esterase. Moreover, a marked reduction in the recloning ability was observed in differentiated colonies compared to undifferentiated colonies. These results indicate the autoinduction of differentiation in human myelocytic leukemia cells. Furthermore, a single cell study that excluded the effect of colony to colony interactions suggested the presence of a differentiation autoinducing factor in the medium.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D014410 Tumor Stem Cell Assay A cytologic technique for measuring the functional capacity of tumor stem cells by assaying their activity. It is used primarily for the in vitro testing of antineoplastic agents. Clonogenic Cell Assay, Tumor,Colony-Forming Units Assay, Tumor,Neoplasm Stem Cell Assay,Stem Cell Assay, Tumor,Colony Forming Units Assay, Tumor
Copied contents to your clipboard!