Studies on the mechanism of the NADPH-catalyzed peroxidation of endogenous microsomal lipid. 1975

J A Thompson, and R C Reitz

The importance of metal chelation in the mechanism of microsomal lipid peroxidation has been studied using both phosphate- and sulfhydryl-containing compounds. The optimal concentration for maximum stimulation by each of these compounds has been determined, and the decrease in stimulation observe at concentrations above the maxima has been related to the ability of these compounds to form stable chelation complexes with non-heme iron. Of the compounds tested, only ADP and ATP facilitated the cooperative binding of NADPH to the membrane and thus suggested the possibility of three binding sites for NADPH. Neither of the other two phosphate-chelating agents (Pi or PPi) and neither of the two thiols (cysteine or dithiothreitol)facilitated cooperative binding of NADPH. These data suggested that the adenine ring of ADP or ATP is directly involved in the cooperativity of NADPH binding. They also emphasized that the binding of the chelation complex to the protein is an important parameter in the mechanism of the NADPH-catalyzed peroxidation of endogenous microsomal lipids. Furthermore, stimulation of the rat of lipid peroxidation by sulhydryl-containing compounds, by freezing thawing the microsomal protein, and by treatment of the protein with detergent may be due to a decrease in this cooperative binding effect. Since cysteine and deoxycholate as well as freezing and thawing alter membrane structure, the stimulation of lipid peroxidation seems to involve some alteration to the structure of the microsomal membrane prior to the onset of enzymatic lipid peroxidation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010544 Peroxidases Ovoperoxidase
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate

Related Publications

J A Thompson, and R C Reitz
July 1979, The Journal of biological chemistry,
J A Thompson, and R C Reitz
March 1986, Biochimica et biophysica acta,
J A Thompson, and R C Reitz
April 1975, Biochimica et biophysica acta,
J A Thompson, and R C Reitz
October 1971, Experientia,
J A Thompson, and R C Reitz
October 1996, Indian journal of biochemistry & biophysics,
J A Thompson, and R C Reitz
August 1976, Biochimica et biophysica acta,
J A Thompson, and R C Reitz
May 1980, Molecular pharmacology,
Copied contents to your clipboard!