Interaction of nerve growth factor with tubulin. Studies on binding and induced polymerization. 1975

A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano

The interaction of the nerve growth factor with the neurotubule protein has been studied with the aim of elucidating the nature of the large complexes that they form when incubated together and the factors and control this event. The results show that the binding of nerve growth factor to tubulin is followed by the formation of large structures that, in certain experimental conditions, accelerate the rate of tubulin polymerization to form microtubules or catalyze their assembly in conditions where this process does not occur spontaneously. The formation of large nerve growth factor-tubulin complexes starts to occur only at a molar ratio of 1.0-1.5 NaCL or GTP strongly inhibit this proceed without a detectable effect on NGF binding. Two hypotheses are postulated explain these findings. Firstly, that tubulin has two sites with different affinity for nerve growth factor and the polymerization occurs only when the second NGF molecule has interacted with the microtubule protein. Alternatively, free tubulin in solution is the polymerization by hindering site of tubulin-factor complexes present in solution at a 1.1 molar ratio. In both cases, GTP, Na-+ or H-+ will affect the formation of large unsoluble, tubulin-NGF complexes, by changing their conformation or by decreasing electrostatic interactions.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies

Related Publications

A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
April 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
January 1983, Biochemistry,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
January 1992, Biochemical pharmacology,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
June 1980, FEBS letters,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
March 1969, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
February 2017, Biochemistry,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
January 1980, Neuroscience,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
September 1982, Journal of biochemistry,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
September 1986, Biochemistry,
A Levi, and M Cimino, and D Mercanti, and J S Chen, and P Calissano
October 1973, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!