Topographical control of cell behaviour: II. Multiple grooved substrata. 1990

P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
Department of Cell Biology, University of Glasgow, Scotland, UK.

Electronics miniaturization techniques have been used to fabricate substrata to study contact guidance of cells. Topographical guidance of three cell types (BHK, MDCK and chick embryo cerebral neurones) was examined on grooved substrata of varying dimensions (4-24 microns repeat, 0.2-1.9 microns depth). Alignment to within 10 degrees of groove direction was used as our criterion for guidance. It was found that repeat spacing had a small effect (alignment is inversely proportional to spacing) but that groove depth proved to be much more important in determining cell alignment, which increased with depth. Measurements of cell alignment and examination by scanning electron microscopy showed that BHK cells and MDCK cells interacted differently with grooved substrata, and also that the response of MDCK cells depended on whether or not the cells were isolated or part of an epithelial cell island. Guidance by a multiple topographical cue is greater than could be predicted from cells' reactions to a single cue (Clark et al. Development 99: 439-448, 1987). Substratum topography is considered to be an important cue in many developmental processes. Cellular properties such as cytoskeletal organisation, cell adhesion and the interaction with other cells are discussed as being factors determining a cells susceptibility to topography.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
June 1995, Cell biology international,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
January 1995, Cell motility and the cytoskeleton,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
November 1986, Experimental cell research,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
September 2016, Journal of biomedical materials research. Part A,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
October 1996, Experimental cell research,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
March 2014, Integrative biology : quantitative biosciences from nano to macro,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
June 2009, Acta biomaterialia,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
January 2009, Journal of biomaterials science. Polymer edition,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
January 2019, Biochemical and biophysical research communications,
P Clark, and P Connolly, and A S Curtis, and J A Dow, and C D Wilkinson
January 2009, Molecular medicine reports,
Copied contents to your clipboard!