Energy transfer in mitochondrial synthesis of ATP; a survey. 1975

M Klingenberg

The energy transduction in mitochondria, with its principal agent ATP, still represents a major challenge for biological research. In general, the energy transduction process is divided into three sections: (1) the redox processes; (2) a conservation of intermediary energy forms; (3) synthesis of ATP. All three processes are linked to the membrane and are, therefore, as difficult to resolve as are processes linked to other biomembranes. It is probable that the electron transport system is constructed in such a way as to provide energy for synthesis of ATP and related processes. Important for this function is the transversal distribution of these components across the membrane, facilitating generation of membrane potential by electron or proton transfer. The exact composition of the respiratory chain is not yet known, in particular with respect to iron-sulphur proteins. Progress is achieved by defining single species of the respiratory chain, subunit composition, amino acid sequences and genetic derivation from intra- or extra-mitochondrial translation. Energy generated by oxidation can be trapped before ATP is formed by a number of reactions, in particular reversed electron transport, energy-dependent transhydrogenation and uptake of anions or cations into the mitochondria. The latter reaction is of major importance for understanding the intermediate energy form, as it appears to use energy most directly and be driven mainly by membrane potential or proton gradient across the membrane. The formation of ATP is a major problem hindering elucidation of the mechanism of oxidative phosphorylation. The mechanism of this enzymic process is not yet understood although the enzymes have been isolated and the subunits have been defined. Most probably, a concerted reaction between ADP and phosphate, driven by some conformational transition of the complex, leads to the formation of ATP. Release of ATP from a hydrophobic to hydrophilic environment may consume most of the energy.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010086 Oxidative Phosphorylation Coupling Factors
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions

Related Publications

M Klingenberg
August 1967, The New England journal of medicine,
M Klingenberg
April 1959, A.M.A. archives of neurology and psychiatry,
M Klingenberg
July 2018, Scientific reports,
M Klingenberg
November 1986, Biochemistry,
M Klingenberg
March 2022, Journal of photochemistry and photobiology. B, Biology,
M Klingenberg
July 1975, Federation proceedings,
M Klingenberg
October 2021, Mathematical biosciences,
M Klingenberg
January 1980, Pharmacology & therapeutics,
Copied contents to your clipboard!