Expression and function of the uvsW gene of bacteriophage T4. 1990

L K Derr, and K N Kreuzer
Duke University Program in Genetics, Durham, NC 27710.

The uvsW gene of bacteriophage T4 is involved in many aspects of phage DNA metabolism, including replication, recombination and repair. To approach the function of uvsW, the structure and expression of the uvsW gene were first explored. Molecular analyses defined the promoter region, the transcriptional start site, and the probable initiation codon. The required promoter region contains a sequence resembling the consensus for T4 late promoters. Furthermore, transcriptional analyses indicated that uvsW is expressed as a late gene, providing a time frame for uvsW action. Several novel observations restrict possible models for uvsW function. A uvsW-deletion mutation reduced overall phage-phage recombination 1.7-fold, but reduced plasmid integration tenfold relative to the wild-type. Thus, the UsvW protein plays a critical role in a specific recombination pathway involving simple reciprocal exchange. One of the most intriguing phenotypes associated with uvsW mutations is the restoration of arrested DNA synthesis caused by mutations that block secondary initiation, the major mode by which replication initiates at late times in wild-type infections. Experiments with plasmid model systems indicate that a uvsW mutation does not restore the arrested DNA synthesis by rescuing secondary initiation directly. Rather, a uvsW mutation appears to allow some alternative mode of late replication, implying that the UvsW protein normally represses this alternative pathway. The rifampicin resistance of uvsW-repressed replication suggests that it involves either tertiary initiation or some novel mode of initiation. Finally, the inappropriate early expression of uvsW from a heterologous promoter blocks most early phage DNA synthesis in a uvsY-mutant infection, suggesting that the UvsW protein is normally the key regulatory factor in the switch from early to late DNA replication. According to this suggestion, the restored late replication in a uvsW mutant is an abnormal continuation of an early mode(s) of replication.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

L K Derr, and K N Kreuzer
November 2007, The Journal of biological chemistry,
L K Derr, and K N Kreuzer
July 1982, Virology,
L K Derr, and K N Kreuzer
December 1984, Journal of virology,
L K Derr, and K N Kreuzer
April 2004, Structure (London, England : 1993),
L K Derr, and K N Kreuzer
July 1990, Molecular & general genetics : MGG,
L K Derr, and K N Kreuzer
September 1983, Journal of virology,
L K Derr, and K N Kreuzer
October 1975, Journal of virology,
L K Derr, and K N Kreuzer
January 1973, Journal of molecular biology,
L K Derr, and K N Kreuzer
April 2001, Molecular and cellular biology,
L K Derr, and K N Kreuzer
July 1980, Journal of virology,
Copied contents to your clipboard!