Molecular pathways: human leukocyte antigen G (HLA-G). 2013

Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
Authors' Affiliation: Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Milan, Italy.

Human leukocyte antigen G (HLA-G) is a nonclassical MHC class I molecule that exerts important tolerogenic functions. Its main physiologic expression occurs in the placenta, where it participates in the maternal tolerance toward the fetus. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. It is expressed in various types of primary solid (melanoma, head and neck, lung, urogenital, gastrointestinal, and breast cancers) and hematologic malignancies (acute leukemia, lymphomas) and metastases. HLA-G ectopic expression is observed in cancer, suggesting that its expression is one strategy used by tumor cells to escape immune surveillance. In this review, we will focus on HLA-G expression in cancers and its association with the prognosis. We will highlight the underlying molecular mechanisms of impaired HLA-G expression, the immune tolerant function of HLA-G in tumors, and the potential diagnostic use of membrane-bound and soluble HLA-G as a biomarker to identify tumors and to monitor disease stage. As HLA-G is a potent immunoinhibitory molecule, its blockade remains an attractive therapeutic strategy against cancer. Elimination of HLA-G-expressing cancer cells would be important in the efficacy of anticancer therapies.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014408 Biomarkers, Tumor Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or BODY FLUIDS. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including HORMONES; ANTIGENS; amino and NUCLEIC ACIDS; ENZYMES; POLYAMINES; and specific CELL MEMBRANE PROTEINS and LIPIDS. Biochemical Tumor Marker,Cancer Biomarker,Carcinogen Markers,Markers, Tumor,Metabolite Markers, Neoplasm,Tumor Biomarker,Tumor Marker,Tumor Markers, Biochemical,Tumor Markers, Biological,Biochemical Tumor Markers,Biological Tumor Marker,Biological Tumor Markers,Biomarkers, Cancer,Marker, Biochemical Tumor,Marker, Biologic Tumor,Marker, Biological Tumor,Marker, Neoplasm Metabolite,Marker, Tumor Metabolite,Markers, Biochemical Tumor,Markers, Biological Tumor,Markers, Neoplasm Metabolite,Markers, Tumor Metabolite,Metabolite Markers, Tumor,Neoplasm Metabolite Markers,Tumor Markers, Biologic,Tumor Metabolite Marker,Biologic Tumor Marker,Biologic Tumor Markers,Biomarker, Cancer,Biomarker, Tumor,Cancer Biomarkers,Marker, Tumor,Markers, Biologic Tumor,Markers, Carcinogen,Metabolite Marker, Neoplasm,Metabolite Marker, Tumor,Neoplasm Metabolite Marker,Tumor Biomarkers,Tumor Marker, Biochemical,Tumor Marker, Biologic,Tumor Marker, Biological,Tumor Markers,Tumor Metabolite Markers
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D057170 Translational Research, Biomedical The endeavour to traverse a specific step of the translation process of turning an observation in the laboratory, clinic, or community into an intervention that will improve the health of individuals and the public. (from Nat Rev Drug Discov. 2018 July ; 17(7): 455–456.) Translational Medical Research,Translational Research,Translational Research, Medical,Biomedical Translational Research,Medical Research, Translational,Medical Translational Research,Research, Biomedical Translational,Research, Medical Translational,Research, Translational,Research, Translational Medical
D059951 HLA-G Antigens Class I human histocompatibility (HLA) surface antigens encoded by alleles on locus B of the HLA complex. The HLA-G antigens are considered non-classical class I antigens due to their distinct tissue distribution which differs from HLA-A; HLA-B; and HLA-C antigens. Note that several isoforms of HLA-G antigens result from alternative splicing of messenger RNAs produced from the HLA-G*01 allele. HLA G,HLA-G,HLA-G Antigen,HLA-G1,HLA-G1 Isoform,HLA-G2,HLA-G2 Isoform,HLA-G3,HLA-G3 Isoform,HLA-G4,HLA-G4 Isoform,HLA-G5,HLA-G5 Isoform,HLA-G6,HLA-G6 Isoform,HLA-G7,HLA-G7 Antigen,HLA-G7 Isoform,Antigen, HLA-G,Antigen, HLA-G7,Antigens, HLA-G,HLA G Antigen,HLA G Antigens,HLA G1 Isoform,HLA G2 Isoform,HLA G3 Isoform,HLA G6 Isoform,HLA G7 Antigen,HLA G7 Isoform,Isoform, HLA-G4,Isoform, HLA-G6,Isoform, HLA-G7

Related Publications

Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
January 2014, Gastroenterology and hepatology from bed to bench,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
December 2014, Gaceta medica de Mexico,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
August 2017, Turkish journal of medical sciences,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
October 2006, Gynecologic oncology,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
July 2004, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
January 2014, PloS one,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
April 2016, Human immunology,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
April 2015, Human immunology,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
January 2014, Brazilian journal of otorhinolaryngology,
Giuseppe Curigliano, and Carmen Criscitiello, and Lucia Gelao, and Aron Goldhirsch
July 2011, Clinical chemistry,
Copied contents to your clipboard!