Phosphoenolpyruvate hydrolase activity of rabbit muscle pyruvate kinase. 1975

K Erhard, and R C Davis

Rabbit muscle pyruvate kinase catalyzes the hydrolysis of P-enolpyruvate at the same active site which catalyzes the physiologically important kinase reaction. The hydrolase activity is lower than the kinase activity by a factor of at least 10(3). There are specific monovalent cation and divalent cation requirements. No other cofactors are required. The relative activation of the pyruvate kinase for the hydrolase reaction is: Ni(II) greater than Co(II) greater than Mg(II) greater than Mn(II). This parallels the rates of nonenzymatic hydrolysis of P-enolpyruvate (Benkovic, S.J., and Schray, K.J. (1968) Biochemistry 7, 4097-4102). The pH rate profiles of the hydrolase and kinase reactions activated by Ni(II) and Co(II) are similar, suggesting common features in their mechanisms. In contrast to the kinase reaction, the reaction velocity of the hydrolase increases at high Co(II) concentrations indicating a second mode for hydrolysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D010070 Oxalates Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure. Oxalate,Ethanedioic Acids,Oxalic Acids,Acids, Ethanedioic,Acids, Oxalic
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

K Erhard, and R C Davis
January 1972, Biochemical and biophysical research communications,
K Erhard, and R C Davis
March 1981, European journal of biochemistry,
K Erhard, and R C Davis
March 1969, The Journal of biological chemistry,
K Erhard, and R C Davis
February 1981, Biochemistry,
K Erhard, and R C Davis
February 1973, The Biochemical journal,
K Erhard, and R C Davis
June 1988, Archivos de biologia y medicina experimentales,
K Erhard, and R C Davis
March 1983, The Biochemical journal,
Copied contents to your clipboard!