Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. 2013

Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain.

Complement is an essential component of innate immunity. Its activation results in the assembly of unstable protease complexes, denominated C3/C5 convertases, leading to inflammation and lysis. Regulatory proteins inactivate C3/C5 convertases on host surfaces to avoid collateral tissue damage. On pathogen surfaces, properdin stabilizes C3/C5 convertases to efficiently fight infection. How properdin performs this function is, however, unclear. Using electron microscopy we show that the N- and C-terminal ends of adjacent monomers in properdin oligomers conform a curly vertex that holds together the AP convertase, interacting with both the C345C and vWA domains of C3b and Bb, respectively. Properdin also promotes a large displacement of the TED (thioester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains of C3b, which likely impairs C3-convertase inactivation by regulatory proteins. The combined effect of molecular cross-linking and structural reorganization increases stability of the C3 convertase and facilitates recruitment of fluid-phase C3 convertase to the cell surfaces. Our model explains how properdin mediates the assembly of stabilized C3/C5-convertase clusters, which helps to localize complement amplification to pathogen surfaces.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D011414 Properdin A 53-kDa protein that is a positive regulator of the alternate pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It stabilizes the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) and protects it from rapid inactivation, thus facilitating the cascade of COMPLEMENT ACTIVATION and the formation of MEMBRANE ATTACK COMPLEX. Individuals with mutation in the PFC gene exhibit properdin deficiency and have a high susceptibility to infections. Complement Factor P,Factor P, Complement
D011415 Complement Factor B A glycine-rich, heat-labile serum glycoprotein that contains a component of the C3 CONVERTASE ALTERNATE PATHWAY (C3bBb). Bb, a serine protease, is generated when factor B is cleaved by COMPLEMENT FACTOR D into Ba and Bb. C3 Proactivator,C3PA,Complement 3 Proactivator,Factor B,Properdin Factor B,Bb Fragment of Factor B,Complement Factor B Fragment, Bb,Complement Factor B, Alternative Pathway,Complement Factor B-Derived Fragment Bb,Complement Factor Ba,Complement Factor Bb,Complement Protein B,Complement Protein Factor B,Properdin Factor Ba,Properdin Factor Bb,Properdin Factor Bf,Properdin Factor Bf F1,Bb, Complement Factor,Complement Factor B Derived Fragment Bb,Factor B, Complement,Factor B, Properdin,Factor Ba, Complement,Factor Ba, Properdin,Factor Bb, Complement,Factor Bb, Properdin,Factor Bf, Properdin,Proactivator, C3,Proactivator, Complement 3,Protein B, Complement
D003170 Complement Pathway, Alternative Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Alternative Complement Pathway,Properdin Pathway,Alternative Complement Activation Pathway,Complement Activation Pathway, Alternative
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
October 1976, The Journal of experimental medicine,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
January 1976, Immunochemistry,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
May 1999, Immunopharmacology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
August 1988, The Biochemical journal,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
March 1983, Molecular immunology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
July 2009, Nature immunology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
January 2019, Frontiers in immunology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
December 1989, Immunology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
June 1987, Experimental parasitology,
Martín Alcorlo, and Agustín Tortajada, and Santiago Rodríguez de Córdoba, and Oscar Llorca
August 1979, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!