Characteristic corrosion resistance of nanocrystalline TiN films prepared by high density plasma reactive magnetron sputtering. 2013

J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
Department of Materials Science and Engineering, Pusan National University, Busan 609-735, Korea.

Nanocytalline TiN films were deposited on non-alkali glass and Al substrates by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMF). The microstructure and corrosion resistance of the TiN-coated Al substrates were estimated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. All the TiN films shows that they have a (111) preferred orientation at room temperature. TiN films deposited on Al substrate using only DCMS 400 W showed a sheet resistance of 3.22 x 10-1 omega/symbol see texts (resistivity, 3.22 x 10-5 omegacm). On the other hand, a relatively low sheet resistance of 1.91 x 10-1 omega/symbol see text (1.91 x 10-5 omegacm) was obtained for the dense nanocrystalline TiN film deposited on Al substrate using DCMS 375 W+ EMF 25 W, indicating that the introduction of an EMF system enhanced the electrical properties of the TiN film. TiN films deposited on Al substrate at 400 degreesC had a (200) preferred orientation with the lowest sheet resistance of 1.28x10-1 omega/symbol see texts (1.28 x 10-5 omegacm) which was attributed to reduced nano size defects and an improvement of the crystallinity. Potentiostatic and Potentiodynamic tests with a TiN-coated Al showed good corrosion resistance (l/corr, = 2.03 microA/cm2, Ecorr = -348 mV) compared to the uncoated Al substrate (/corr = 4.45 microA/cm2, Ecorr = -650 mV). Furthermore, EMF system showed that corrosion resistance of the TiN film also was enhanced compared to DCMS only. For the TiN film deposited on Al substrate at 400 degreesC, corrosion current and potential was 0.63 micro/cm2 and -1.5 mV, respectively. This improved corrosion resistance of the TiN film could be attributed to the densification of the film caused by enhancement of nitrification with increasing high reactive nitrogen radicals.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D003343 Corrosion The gradual destruction of a metal or alloy due to oxidation or action of a chemical agent. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Corrosions
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D014025 Titanium A dark-gray, metallic element of widespread distribution but occurring in small amounts with atomic number, 22, atomic weight, 47.867 and symbol, Ti; specific gravity, 4.5; used for fixation of fractures.
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
April 2019, Entropy (Basel, Switzerland),
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
August 2022, Nanomaterials (Basel, Switzerland),
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
May 2016, Journal of nanoscience and nanotechnology,
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
February 2011, Journal of nanoscience and nanotechnology,
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
November 2018, Materials (Basel, Switzerland),
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
March 2022, Nanotechnology,
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
July 1988, Applied optics,
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
September 2009, Journal of nanoscience and nanotechnology,
J H Kim, and C G Kang, and Y T Kim, and W S Cheong, and P K Song
January 2018, Materials (Basel, Switzerland),
Copied contents to your clipboard!