[Effect of naringenin on learning and memory ability on model rats with Alzheimer disease]. 2013

Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
Chongqing Medical University, Chongqing 400016, China. majing8712@126.com

OBJECTIVE To investigate the effects of naringenin on the learning and memory ability of Alzheimer disease (AD) rats. METHODS 30 male SD rats were randomly divided into control group (sham operation group), model group and naringenin group. AD model was established by injecting strepoztocin (3 mg/kg) twice into each of two intracerebroventriculas. Naringenin group were given intragastric administration of naringenin once a day for 3 weeks and the other two groups were given intragadtric administration of normal saline with the same dosage and time period. After 3 weeks, learning and memory ability in all the three groups were analyzed by Morris water maze, the activity of superoxide dismutase(SOD) and the content of malondialdehyde (MDA) of the rats' brain tissue was detected by chemical colorimetric determination. Observed the expressions of Abeta42 and Abeta40 by immunohistochemical method. The expression and degree of phosphorylation of tau protein was assayed by western blotting. RESULTS 1. Compared with the sham operation group, the mean escape latency of the model group was significantly prolonged (P < 0.05) and the time that rats were in the platform quadrant was significantly shortened (P < 0.0.5). On the contrary, compared with the model group, the mean escape latency of naringenin group was significantly shortened (P < 0.05) and the time that rats were in the platform quadrant was significantly extended (P < 0.005). 2. The level of MDA in the model group, compared with the sham operation group group, was significantly increased (P < 0.05). Whereas, that of naringenin group, compared with the model group, was significantly decreased compared with the sham operation group (P < 0.05). The activity of SOD in the naringenin group was significantly increased comparing with the model group (P < 0.05). 3. The expressions of Abeta40 and Abeta42 in model group were obviously up-regulated. Instead, the expressions of Abeta40 and Abeta42 in the naringenin group were significantly down regulated. 4. There was no significant difference in the expression of tau protein among each groups. Nevertheless, the phosphorylation of tau protein in the model group was significantly enhanced than that in the control group (P < 0.05), and the phosphorylation of tau protein in the naringenin group was significantly reduced than that in the model group (P < 0.05). CONCLUSIONS Naringenin can improve learning and memory ability of model rats with Alzheimer disease through the approach of oxidative stress.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004365 Drugs, Chinese Herbal Chinese herbal or plant extracts which are used as drugs to treat diseases or promote general well-being. The concept does not include synthesized compounds manufactured in China. Chinese Herbal Drugs,Plant Extracts, Chinese,Chinese Drugs, Plant,Chinese Plant Extracts,Extracts, Chinese Plant,Herbal Drugs, Chinese
D000544 Alzheimer Disease A degenerative disease of the BRAIN characterized by the insidious onset of DEMENTIA. Impairment of MEMORY, judgment, attention span, and problem solving skills are followed by severe APRAXIAS and a global loss of cognitive abilities. The condition primarily occurs after age 60, and is marked pathologically by severe cortical atrophy and the triad of SENILE PLAQUES; NEUROFIBRILLARY TANGLES; and NEUROPIL THREADS. (From Adams et al., Principles of Neurology, 6th ed, pp1049-57) Acute Confusional Senile Dementia,Alzheimer's Diseases,Dementia, Alzheimer Type,Dementia, Senile,Presenile Alzheimer Dementia,Senile Dementia, Alzheimer Type,Alzheimer Dementia,Alzheimer Disease, Early Onset,Alzheimer Disease, Late Onset,Alzheimer Sclerosis,Alzheimer Syndrome,Alzheimer Type Senile Dementia,Alzheimer's Disease,Alzheimer's Disease, Focal Onset,Alzheimer-Type Dementia (ATD),Dementia, Presenile,Dementia, Primary Senile Degenerative,Early Onset Alzheimer Disease,Familial Alzheimer Disease (FAD),Focal Onset Alzheimer's Disease,Late Onset Alzheimer Disease,Primary Senile Degenerative Dementia,Senile Dementia, Acute Confusional,Alzheimer Dementias,Alzheimer Disease, Familial (FAD),Alzheimer Diseases,Alzheimer Type Dementia,Alzheimer Type Dementia (ATD),Alzheimers Diseases,Dementia, Alzheimer,Dementia, Alzheimer-Type (ATD),Familial Alzheimer Diseases (FAD),Presenile Dementia,Sclerosis, Alzheimer,Senile Dementia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
February 2009, Zhen ci yan jiu = Acupuncture research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
November 2013, Wei sheng yan jiu = Journal of hygiene research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
June 2018, Zhen ci yan jiu = Acupuncture research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
August 2016, Rejuvenation research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
December 2009, Zhen ci yan jiu = Acupuncture research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
June 2013, Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
April 2007, Zhen ci yan jiu = Acupuncture research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
April 2014, Zhen ci yan jiu = Acupuncture research,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
January 1978, Neurologia i neurochirurgia polska,
Jing Ma, and Wen-Qing Yang, and He Zha, and Hua-Rong Yu
February 2009, Zhongguo zhen jiu = Chinese acupuncture & moxibustion,
Copied contents to your clipboard!