The complete mitochondrial genome of the Abe's mangrove goby Mugilogobius abei (Teleostei, Gobiidae). 2015

Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
Institute of Marine Biology, National Taiwan Ocean University , Keelung, Taiwan , ROC and.

In this study, the complete mitochondrial genome of the Abe's mangrove goby Mugilogobius abei has been amplified. Mugilogobius abei is widely contributed species in Northeast to East Asia. The complete mitogenome is 16,483 base pairs (bp) in total length, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 2 rRNAs, 22 tRNAs, and 1 control region (CR). The overall base composition of M. abei is 27.7% for A, 27.0% for T, 28.6% for C, 16.7% for G, with higher AT content of 54.7%. This study will contribute for understanding the phylogenetic approach in genus Mugilogobius and related gobiid genera.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010473 Perciformes The most diversified of all fish orders and the largest vertebrate order. It includes many of the commonly known fish such as porgies, croakers, sunfishes, dolphin fish, mackerels, TUNA, etc. Bluegill,Croakers,Dolphin Fish,Porgies,Sparid Fish,Sparus,Sunfishes,Centrarchidae,Mackerels,Mahi-Mahi,Bluegills,Croaker,Fish, Sparid,Mackerel
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D054629 Genome, Mitochondrial The genetic complement of MITOCHONDRIA as represented in their DNA. Mitochondrial Genome,Genomes, Mitochondrial,Mitochondrial Genomes
D023061 Gene Order The sequential location of genes on a chromosome. Gene Arrangement,Gene Position,Arrangement, Gene,Arrangements, Gene,Gene Arrangements,Gene Positions,Order, Gene,Position, Gene,Positions, Gene

Related Publications

Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
November 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
January 2015, Mitochondrial DNA,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
January 2024, Mitochondrial DNA. Part B, Resources,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
August 2012, Mitochondrial DNA,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
June 2004, Molecules and cells,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
August 2005, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
Shih-Pin Huang, and Chia-Ning Shen, and I-Shiung Chen
January 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Copied contents to your clipboard!