Functional subdivisions of the rat somatic sensorimotor cortex. 1990

T M Barth, and T A Jones, and T Schallert
Department of Psychology, University of Texas, Austin 78712.

The behavioural impairments and subsequent recovery were studied in rats with circumscribed unilateral lesions in the somatic sensorimotor cortex (SMC). Lesions were made in the caudal forelimb region (CFL), the rostral forelimb region (RFL), the anteromedial cortex (AMC) or the hindlimb area. Rats with damage in the CFL produced a deficit in placing the forelimb contralateral to the lesion during exploratory locomotion on a grid surface. Rats with AMC damage circled in the direction ipsilateral to the lesion. Lesions in the CFL or AMC produced an ipsilateral somatosensorimotor asymmetry on the bilateral-stimulation test (responding to adhesive patches placed on the contralateral forelimb was slower) that recovered in 7 days following AMC lesions or 28 days following CFL lesions. Finally, RFL lesions produced an ipsilateral asymmetry on the bilateral-stimulation task that was more severe and enduring (recovery in 60 days). After behavioral recovery, the effects of an additional lesion placed in the homotopic contralateral cortex were examined (two-stage bilateral lesion). Rats receiving two-stage bilateral lesions in the RFL or CFL responded slower to tactile stimulation of the forelimb contralateral to the second lesion. In the case of CFL-damaged rats, placing deficits also appeared contralateral to the most recent injury. In contrast, rats receiving two-stage bilateral AMC lesions did not exhibit behavioral asymmetries following the second lesion. These results provide evidence to suggest that subdivisions of the rat SMC can be distinguished with lesion/behavioral experiments. Moreover, a comparison of the effects of unilateral and two-stage bilateral lesions may help in the parcellation of the rat SMC into functionally distinct subareas and provide a basis for studying the processes of recovery and maintenance of function following brain damage.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain

Related Publications

T M Barth, and T A Jones, and T Schallert
November 2016, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T M Barth, and T A Jones, and T Schallert
February 1983, Experimental neurology,
T M Barth, and T A Jones, and T Schallert
April 1989, The Journal of comparative neurology,
T M Barth, and T A Jones, and T Schallert
March 2005, Neuroreport,
T M Barth, and T A Jones, and T Schallert
January 2019, Brain structure & function,
T M Barth, and T A Jones, and T Schallert
April 2009, Experimental brain research,
T M Barth, and T A Jones, and T Schallert
January 1993, Acta neurobiologiae experimentalis,
T M Barth, and T A Jones, and T Schallert
September 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T M Barth, and T A Jones, and T Schallert
December 1996, Current opinion in neurobiology,
T M Barth, and T A Jones, and T Schallert
April 2014, The European journal of neuroscience,
Copied contents to your clipboard!