Epigenetic regulation of pancreatic islets. 2013

Cecile Haumaitre
CNRS UMR 7622, Université Pierre et Marie Curie, INSERM U969, 9 quai Saint Bernard, 75005, Paris, France, cecile.haumaitre@inserm.fr.

Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA expression, contribute to regulate islet cell development and function. Indeed, epigenetic mechanisms were recently shown to be involved in the control of endocrine cell fate decision, islet differentiation, β-cell identity, proliferation, and mature function. Epigenetic mechanisms can also contribute to the pathogenesis of complex diseases. Emerging knowledge regarding epigenetic mechanisms suggest that they may be involved in β-cell dysfunction and pathogenesis of diabetes. Epigenetic mechanisms could predispose to the diabetic phenotype such as decline of β-cell proliferation ability and β-cell failure, and account for complications associated with diabetes. Better understanding of epigenetic landscapes of islet differentiation and function may be useful to improve β-cell differentiation protocols and discover novel therapeutic targets for prevention and treatment of diabetes.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics
D050417 Insulin-Secreting Cells A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN. Pancreatic beta Cells,beta Cells, Pancreatic,Pancreatic B Cells,B Cell, Pancreatic,B Cells, Pancreatic,Cell, Insulin-Secreting,Cells, Insulin-Secreting,Insulin Secreting Cells,Insulin-Secreting Cell,Pancreatic B Cell,Pancreatic beta Cell,beta Cell, Pancreatic
D019175 DNA Methylation Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor. DNA Methylations,Methylation, DNA,Methylations, DNA
D022661 RNA, Untranslated RNA which does not code for protein but has some enzymatic, structural or regulatory function. Although ribosomal RNA (RNA, RIBOSOMAL) and transfer RNA (RNA, TRANSFER) are also untranslated RNAs they are not included in this scope. Noncoding RNA,RNA, Non-Coding,RNA, Non-Peptide-Coding,RNA, Non-Protein-Coding,RNA, Noncoding,RNA, Nontranslated,npcRNA,Non-Coding RNA,Non-Peptide-Coding RNA,Non-Protein-Coding RNA,Nontranslated RNA,RNA, Non Coding,RNA, Non Peptide Coding,RNA, Non Protein Coding,Untranslated RNA

Related Publications

Cecile Haumaitre
March 2014, Diabetologia,
Cecile Haumaitre
January 2010, Xenotransplantation,
Cecile Haumaitre
January 2017, Methods in molecular biology (Clifton, N.J.),
Cecile Haumaitre
February 2004, Diabetes,
Cecile Haumaitre
November 1981, Diabetes,
Cecile Haumaitre
August 2017, Journal of diabetes investigation,
Cecile Haumaitre
January 2013, Annual review of physiology,
Cecile Haumaitre
January 2004, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!