Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. 2013

L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002154 Calpain Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC 3.4.22.4. Calcium-Activated Neutral Protease,Calcium-Dependent Neutral Proteinase,Ca2+-Activated Protease,Calcium-Activated Neutral Proteinase,Calcium-Activated Protease,Calcium-Dependent Neutral Protease,Calpain I,Calpain II,Desminase,Ca2+ Activated Protease,Calcium Activated Neutral Protease,Calcium Activated Neutral Proteinase,Calcium Activated Protease,Calcium Dependent Neutral Protease,Calcium Dependent Neutral Proteinase,Neutral Protease, Calcium-Activated,Neutral Protease, Calcium-Dependent,Neutral Proteinase, Calcium-Activated,Neutral Proteinase, Calcium-Dependent,Protease, Ca2+-Activated,Protease, Calcium-Activated,Protease, Calcium-Activated Neutral,Protease, Calcium-Dependent Neutral,Proteinase, Calcium-Activated Neutral,Proteinase, Calcium-Dependent Neutral
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
June 1996, The American journal of physiology,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
February 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
May 1991, The American journal of physiology,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
January 1982, Cell and tissue research,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
June 1988, Cryobiology,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
January 1991, Biomedica biochimica acta,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
April 2023, International journal of molecular sciences,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
January 1977, Molecular and cellular endocrinology,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
July 1987, The Journal of clinical investigation,
L H Manfredi, and N M Zanon, and M A Garófalo, and L C C Navegantes, and I C Kettelhut
May 1969, Journal of applied physiology,
Copied contents to your clipboard!