Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. 1990

G A Wray, and R A Raff
Department of Biology, Indiana University, Bloomington 47405.

The lineage and fate of each blastomere in the 32-cell embryo of the direct-developing sea urchin Heliocidaris erythrogramma have been traced by microinjection of tetramethylrhodamine-dextran. The results reveal substantive evolutionary modifications of the ancestral cell lineage pattern of indirect sea urchin development. Significant among these modifications are changes in the time and order of cell lineage segregation: vegetal ectodermal founder cells consistently arise earlier than during indirect development, while internal founder cells generally segregate later and in a different sequence. Modifications have also arisen in proportions of the embryo fated to become various cell types and larval structures. Ectodermal fates, particularly vestibular ectoderm, comprise a greater proportion of the total cellular volume in H. erythrogramma. Among internal cell types, coelom consumes more and endoderm less of the remaining cellular volume than during indirect sea urchin development. Evolutionary modifications are also apparent in the positional origin of larval cell types and structures in H. erythrogramma. These include an apparent tilt in the axis of prospective cell fate relative to the animal-vegetal axis as defined by cleavage planes. Together these evolutionary changes in the cell lineage of H. erythrogramma produce an accelerated loss of dorsoventral symmetry in cell fate relative to indirect development. The extent and diversity of rearrangements in its cell lineage indicate that the non-feeding larva of H. erythrogramma is a highly modified, novel form rather than a degenerate pluteus larva. These same modifications underscore the evolutionarily flexible relationship between cell lineage, gene expression, and larval morphology in sea urchin development.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D001757 Blastomeres Undifferentiated cells resulting from cleavage of a fertilized egg (ZYGOTE). Inside the intact ZONA PELLUCIDA, each cleavage yields two blastomeres of about half size of the parent cell. Up to the 8-cell stage, all of the blastomeres are totipotent. The 16-cell MORULA contains outer cells and inner cells. Blastocytes,Blastocyte,Blastomere
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004064 Digestive System A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS). Ailmentary System,Alimentary System
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea

Related Publications

G A Wray, and R A Raff
December 2003, Journal of experimental zoology. Part B, Molecular and developmental evolution,
G A Wray, and R A Raff
January 2019, Journal of biological methods,
G A Wray, and R A Raff
January 1969, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
G A Wray, and R A Raff
December 2008, Journal of experimental zoology. Part B, Molecular and developmental evolution,
Copied contents to your clipboard!