Proton-induced endocytosis is dependent on cell membrane fluidity, lipid-phase order and the membrane resting potential. 2013

Nadav Ben-Dov, and Rafi Korenstein
Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel. Electronic address: nadavbe4@tx.technion.ac.il.

Recently it has been shown that decreasing the extracellular pH of cells stimulates the formation of inward membrane invaginations and vesicles, accompanied by an enhanced uptake of macromolecules. This type of endocytosis was coined as proton-induced uptake (PIU). Though the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the dependence of the phenomenon on plasma membrane characteristics is still unknown. The present study shows that depolarization of the membrane resting potential elevates PIU by 25%, while hyperpolarization attenuates it by 25%. Comparison of uptake in suspended and adherent cells implicates that the resting-potential affects PIU through remodeling the actin-cytoskeleton. The pH at the external interface of the cell membrane rather than the pH gradient across it determines the extent of PIU. PIU increases linearly upon temperature increase in the range of 4-36°C, in correlation with the membrane fluidity. The plasma membrane fluidity and the lipid phase order are modulated by enriching the cell's membrane with cholesterol, tergitol, dimethylsulfoxide, 6-ketocholestanol and phloretin and by cholesterol depletion. These treatments are shown to alter the extent of PIU and are better correlated with membrane fluidity than with the lipid phase order. We suggest that the lipid phase order and fluidity influence PIU by regulating the lipid order gradient across the perimeter of the lipid-condensed microdomains (rafts) and alter the characteristic tension line that separates the higher ordered lipid-domains from the lesser ordered ones.

UI MeSH Term Description Entries
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

Nadav Ben-Dov, and Rafi Korenstein
December 2023, Journal of colloid and interface science,
Nadav Ben-Dov, and Rafi Korenstein
January 1973, Physiological chemistry and physics,
Nadav Ben-Dov, and Rafi Korenstein
November 1978, Biochimica et biophysica acta,
Nadav Ben-Dov, and Rafi Korenstein
December 2018, Journal of bioenergetics and biomembranes,
Nadav Ben-Dov, and Rafi Korenstein
January 1987, Free radical biology & medicine,
Nadav Ben-Dov, and Rafi Korenstein
September 2003, Veterinary research communications,
Nadav Ben-Dov, and Rafi Korenstein
January 1980, Advances in pathobiology,
Nadav Ben-Dov, and Rafi Korenstein
November 1987, Bioscience reports,
Copied contents to your clipboard!