Purification and characterization of two forms of 2,3,4,7,8-pentachlorodibenzofuran-inducible cytochrome P-450 in hamster liver. 1990

N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka.

Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
November 1992, The Biochemical journal,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
March 1982, The Journal of biological chemistry,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
March 1988, Biochemistry international,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
September 1982, The Journal of biological chemistry,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
May 1983, Journal of biochemistry,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
September 1988, Journal of biochemistry,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
September 1984, Journal of biochemistry,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
October 1987, Biochemical and biophysical research communications,
N Koga, and N Ariyoshi, and H Nakashima, and H Yoshimura
November 1988, Biochemistry,
Copied contents to your clipboard!