Evidence for electron transfer via ubiquinone between quinoproteins D-glucose dehydrogenase and alcohol dehydrogenase of Gluconobacter suboxydans. 1990

E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
Department of Agricultural Chemistry, Faculty of Agriculture, Yamaguchi University.

Gluconobacter suboxydans contains membrane-bound D-glucose and alcohol dehydrogenases (GDH and ADH) as the primary dehydrogenases in the respiratory chain. These enzymes are known to be quinoproteins having pyrroloquinoline quinone as the prosthetic group. GDH reduces an artificial electron acceptor, ferricyanide, in the membrane, but not after solubilization with Triton X-100, while ADH can react with the electron acceptor even after solubilization and further purification. In this study, it has been shown that the ferricyanide reductase activity of GDH is restored by adding the supernatant solubilized with Triton X-100 to the residue, and also by incorporation of purified ADH into the membranes of an ADH-deficient strain. G. suboxydans var. alpha. In addition, the ferricyanide reductase activity of GDH was reconstituted in proteoliposomes from GDH, ADH, and ubiquinone-10. Thus, the results indicated that the electron transfer from GDH to ferricyanide was mediated by ubiquinone and ADH. The data also suggest that GDH and ADH transfer electrons mutually via ubiquinone in the respiratory chain.

UI MeSH Term Description Entries
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002237 Carbohydrate Dehydrogenases Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99. Carbohydrate Oxidoreductases,Dehydrogenases, Carbohydrate,Oxidoreductases, Carbohydrate
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005292 Ferricyanides Inorganic salts of the hypothetical acid, H3Fe(CN)6.
D005948 Glucose Dehydrogenases D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10. Glucose Oxidoreductases,Dehydrogenases, Glucose,Oxidoreductases, Glucose
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
January 2008, Pakistan journal of biological sciences : PJBS,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
January 1999, Bioscience, biotechnology, and biochemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
October 2008, Bioscience, biotechnology, and biochemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
April 2003, Biochimica et biophysica acta,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
January 1999, Bioscience, biotechnology, and biochemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
January 2002, Bioscience, biotechnology, and biochemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
August 1999, Analytical chemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
November 2002, Bioscience, biotechnology, and biochemistry,
E Shinagawa, and K Matsushita, and O Adachi, and M Ameyama
February 2022, Bioelectrochemistry (Amsterdam, Netherlands),
Copied contents to your clipboard!