Invariant chain trimers are sequestered in the rough endoplasmic reticulum in the absence of association with HLA class II antigens. 1990

M S Marks, and J S Blum, and P Cresswell
Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710.

HLA class II antigens are heterodimeric cell surface glycoproteins that interact with antigenic peptides to form complexes recognizable by CD4-positive T cells. During their biosynthesis, class II antigens are retained in a post-Golgi compartment in association with the invariant chain, which dissociates before class II cell surface expression. To address whether the invariant chain mediates this post-Golgi retention, its transport and assembly were examined in cells that do not express HLA class II antigens. Pulse-chase analysis and endoglycosidase digestions showed that very little invariant chain proceeded as far as the trans-Golgi in class II-negative cell lines. Immunofluorescence studies suggested that in these cells the invariant chain is sequestered in the RER. Gel filtration and cross-linking data showed that RER-localized invariant chain is present as trimers or aggregated trimers. Multimerization is mediated by lumenal interactions; a proteolytic fragment of the invariant chain corresponding to the lumenal domain remained trimeric as determined by cross-linking analysis. Similar transport and structural characteristics were observed for a pool of excess invariant chain in class II-positive cells, suggesting that an excess of invariant chain in the ER may be important for class II antigen function. These results have important implications for the transport of cellular proteins in general and for the role of the invariant chain in class II antigen biosynthesis.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006681 HLA-D Antigens Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology. Antigens, HLA-D,Class II Human Antigens,HLA-Dw Antigens,Human Class II Antigens,Ia-Like Antigens, Human,Immune Response-Associated Antigens, Human,Immune-Associated Antigens, Human,Immune-Response Antigens, Human,HLA-D,HLA-Dw,Immune Response Associated Antigens, Human,Antigens, HLA D,Antigens, HLA-Dw,Antigens, Human Ia-Like,Antigens, Human Immune-Associated,Antigens, Human Immune-Response,HLA D Antigens,HLA Dw Antigens,Human Ia-Like Antigens,Human Immune-Associated Antigens,Human Immune-Response Antigens,Ia Like Antigens, Human,Immune Associated Antigens, Human,Immune Response Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

M S Marks, and J S Blum, and P Cresswell
April 1986, Journal of immunology (Baltimore, Md. : 1950),
M S Marks, and J S Blum, and P Cresswell
February 2011, PloS one,
M S Marks, and J S Blum, and P Cresswell
November 1986, The Journal of experimental medicine,
M S Marks, and J S Blum, and P Cresswell
June 1992, Journal of immunology (Baltimore, Md. : 1950),
M S Marks, and J S Blum, and P Cresswell
January 2007, International immunology,
M S Marks, and J S Blum, and P Cresswell
February 1994, The EMBO journal,
M S Marks, and J S Blum, and P Cresswell
January 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!