Class II genes of miniature swine. IV. Characterization and expression of two allelic class II DQB cDNA clones. 1990

K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
Transplantation Biology Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Two cDNA clones coding for allelic miniature swine MHC class II Ag DQB chains have been isolated, characterized, and shown to be expressed after transfection into mouse fibroblasts. The two alleles differ at the nucleotide level by an overwhelming proportion of replacement substitutions, suggesting the influence of selection for polymorphism. Most of the resulting predicted amino acid replacements are in regions commonly polymorphic in mouse Ab and human DQB sequences, corresponding to the predicted Ag recognition site. Nucleotide and amino acid sequence comparisons to homologous mouse and human sequences show more similarity between swine and man than between either swine and mouse or man and mouse. This tendency is most pronounced when comparing the 3' untranslated regions. However, an examination of unique cross-species sharing of amino acid residues suggests a closer relationship between both man and miniature swine and man and mouse than between miniature swine and mouse. The simplest explanation we can envision for these findings is that the mouse DQB gene homologue (Ab) has been subject to a higher substitution rate than either swine or human DQB genes. An additional cytoplasmic exon expressed in mouse Ab gene products and in putative human DQB2 gene products is lacking in both swine and human DQB cDNA clones. Its absence suggests either that the expression of this exon in mouse Ab genes was activated after mammalian speciation or that the expression of this exon was independently inactivated in swine DQB and human DQB1 genes. Alternatively, the mouse Ab gene may be derived from the same primordial gene as human DQB2, whereas the pig DQB gene may be derived from the same primordial gene as the human DQB1 gene.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
June 1998, The Journal of veterinary medical science,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
January 1994, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
January 1988, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
January 1995, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
December 1987, Veterinary immunology and immunopathology,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
December 1999, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
January 1992, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
January 1989, Immunogenetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
August 1993, Animal genetics,
K Gustafsson, and C LeGuern, and F Hirsch, and S Germana, and K Pratt, and D H Sachs
March 1990, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!