Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. 2013

Indrek Koppel, and Tõnis Timmusk
Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia. Electronic address: indrek.koppel@ttu.ee.

Histone deactylase (HDAC) inhibitors show promise as therapeutics for neurodegenerative and psychiatric diseases. Increased expression of brain-derived neurotrophic factor (BDNF) has been associated with memory-enhancing and neuroprotective properties of these drugs, but the mechanism of BDNF induction is not well understood. Here, we compared the effects of a class I/IIb selective HDAC inhibitor SAHA, a class I selective inhibitor MS-275, a class II selective inhibitor MC1568 and a HDAC6 selective inhibitor tubacin on Bdnf mRNA expression in rat primary neurons. We show that inhibition of class II HDACs resulted in rapid upregulation of Bdnf mRNA levels, whereas class I HDAC inhibition produced a markedly delayed Bdnf induction. In contrast to relatively slow upregulation of Bdnf transcripts, histone acetylation at BDNF promoters I and IV was rapidly induced by SAHA. Bdnf induction by SAHA and MS-275 at 24 h was sensitive to protein synthesis inhibition, suggesting that delayed Bdnf induction by HDAC inhibitors is secondary to changed expression of its regulators. HDAC4 and HDAC5 repressed Bdnf promoter IV activity, supporting the role of class II HDACs in regulation of Bdnf expression. In addition, we show a critical role for the cAMP/Ca2+ response element (CRE) in induction of Bdnf promoter IV by MS-275, MC1568, SAHA and sodium valproate. In contrast, MEF2-binding CaRE1 element was not necessary for promoter IV induction by HDAC inhibition. Finally, we show that similarly to Bdnf, the studied HDAC inhibitors differentially induced expression of neuronal activity-regulated genes c-fos and Arc. Together, our findings implicate class II HDACs in transcriptional regulation of Bdnf and indicate that class II selective HDAC inhibitors may have potential as therapeutics for nervous system disorders.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Indrek Koppel, and Tõnis Timmusk
September 2003, Cellular and molecular life sciences : CMLS,
Indrek Koppel, and Tõnis Timmusk
March 2012, Anti-cancer agents in medicinal chemistry,
Indrek Koppel, and Tõnis Timmusk
May 2008, Journal of medicinal chemistry,
Indrek Koppel, and Tõnis Timmusk
October 2009, Bioorganic & medicinal chemistry letters,
Indrek Koppel, and Tõnis Timmusk
January 2008, Current pharmaceutical design,
Indrek Koppel, and Tõnis Timmusk
July 2008, Chemical Society reviews,
Indrek Koppel, and Tõnis Timmusk
December 2022, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Indrek Koppel, and Tõnis Timmusk
April 2009, Archives of pharmacal research,
Copied contents to your clipboard!