Synthesis of new nucleoside phosphoraziridines as potential site-directed antineoplastic agents. 1990

R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
Department of Medicinal Chemistry, State University of New York, Buffalo, Amherst 14260.

With the aim of increasing the selectivity of the 2,2-dimethylphosphoraziridine type antitumor agents toward the intracellular site of DNA synthesis, a series of new compounds was synthesized in which the reactive bis(2,2-dimethyl-1-aziridinyl)phosphinyl (2,2-DMAP) group was linked through a carbamate or amide linkage to thymidine or cytosine nucleoside moieties. The 3'- and 5'-(2,2-DMAP)carbamates of thymidine (1 and 2) were found to be highly unstable, therefore the corresponding O-acetyl derivatives 5 and 6 were prepared by reacting 5'- and 3'-acetylthymidine, respectively, with dichloroisocyanatophosphine oxide followed by the addition of 2,2-dimethylaziridine and triethylamine. The 3'- and 5'-(2,2-DMAP)amides of thymidine 14 and 15 were prepared by reacting the appropriate thymidinylamines with bis(2,2-dimethyl-1-aziridinyl)phosphinyl chloride (17). The N4-(2,2-DMAP)amides of cytidine, 2'-deoxycytidine, and cytosine arabinoside (18, 19, and 20, respectively) were prepared by reacting the hydrochlorides of the O-peracetylated cytosine nucleosides with triethylamine and POCl3 and, subsequently, with 2,2-dimethylaziridine and triethylamine, to give the corresponding N4-(2,2-DMAP)cytosine nucleoside peracetates 21, 22, and 23, respectively, which were then deacetylated by aminolysis. However, the peacetate intermediates were found to be more stable and, probably for the same reason, also more active against P388 leukemia in mice than the deacetylated products. Particularly, 22 and 23 showed sufficient activity in this in vivo assay system to warrant further evaluation. The relationships between the antitumor activities, the chemical alkylating activities, and the cholinesterase inhibitory activities of these agents are discussed.

UI MeSH Term Description Entries
D007941 Leukemia P388 An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene. P388D(1) Leukemia,P388, Leukemia
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001388 Aziridines Saturated azacyclopropane compounds. They include compounds with substitutions on CARBON or NITROGEN atoms. Ethyleneimines,Azacyclopropanes, Saturated,Dimethyleneimines,Saturated Azacyclopropanes
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
January 2008, Casopis lekaru ceskych,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
March 1963, Journal of medicinal chemistry,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
September 1967, Journal of medicinal chemistry,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
September 1969, Journal of pharmaceutical sciences,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
June 1964, Journal of pharmaceutical sciences,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
March 1969, Journal of medicinal chemistry,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
August 2001, Trends in immunology,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
October 1999, Nucleosides & nucleotides,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
March 2008, Natural product research,
R G Breiner, and W C Rose, and J A Dunn, and J E MacDiarmid, and T J Bardos
February 1975, Journal of medicinal chemistry,
Copied contents to your clipboard!