Insights into insulin-mediated regulation of CYP2E1: miR-132/-212 targeting of CYP2E1 and role of phosphatidylinositol 3-kinase, Akt (protein kinase B), mammalian target of rapamycin signaling in regulating miR-132/-212 and miR-122/-181a expression in primary cultured rat hepatocytes. 2013

Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
Clinical Pharmacology & Toxicology, Children's Hospital of Michigan, Detroit, Michigan (U.S., N.T., T.G., A.D., R.F.N.); and Shriners Hospitals for Children International, Tampa, Florida (R.F.N.).

Several microRNAs (miRNAs) were selected for characterization of their response to insulin signaling based on in silico predictions of targeting CYP2E1 mRNA and previous reports implicating their role in hepatic metabolism and disease. CYP2E1 expression decreases with increasing insulin concentration and has been shown to be regulated by the phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. In primary cultured rat hepatocytes, insulin at 0.1, 1.0, and 10 nM elevated miRNA-132 and -212 expression ∼2- and 1.8-fold, respectively, whereas expression of miRNA-181a and -122 increased ∼1.6- and 1.4-fold, respectively. In contrast, insulin failed to alter significantly the expression of miRNA let-7a. Mechanistic studies using inhibitors of PI3-K, Akt, and mTOR were used to examine the role of the insulin signaling pathway on miR expression and resulted in significant suppression of the insulin-mediated elevation of miR-132, miR-212, and miR-122 levels, with a lesser effect observed for miR-181a. Targeting of the rat CYP2E1 3'-untranslated region (UTR) by miR-132 and -212 was demonstrated with an in vitro luciferase reporter assay. These data show that insulin, which regulates CYP2E1 through the PI3-K, Akt, mTOR signaling pathway, also regulates the expression of miRs that target the 3'-UTR of CYP 2E1 mRNA and are involved in the regulation of hepatic metabolism and disease.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D058539 Phosphatidylinositol 3-Kinase A phosphatidylinositol 3-kinase that catalyzes the conversion of 1-phosphatidylinositol into 1-phosphatidylinositol 3-phosphate. 1-Phosphatidylinositol 3-Kinase,Phosphoinositide 3 Kinase,1 Phosphatidylinositol 3 Kinase,Kinase, Phosphoinositide 3,Phosphatidylinositol 3 Kinase
D058570 TOR Serine-Threonine Kinases A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity. TOR Kinase,TOR Kinases,TOR Serine-Threonine Kinase,Target of Rapamycin Protein,mTOR Serine-Threonine Kinase,mTOR Serine-Threonine Kinases,FK506 Binding Protein 12-Rapamycin Associated Protein 1,FKBP12-Rapamycin Associated Protein,FKBP12-Rapamycin Complex-Associated Protein,Mammalian Target of Rapamycin,Mechanistic Target of Rapamycin Protein,RAFT-1 Protein,Rapamycin Target Protein,Target of Rapamycin Proteins,mTOR Protein,FK506 Binding Protein 12 Rapamycin Associated Protein 1,FKBP12 Rapamycin Associated Protein,FKBP12 Rapamycin Complex Associated Protein,Kinase, TOR,Kinase, TOR Serine-Threonine,Kinase, mTOR Serine-Threonine,Kinases, TOR Serine-Threonine,Kinases, mTOR Serine-Threonine,Protein Target, Rapamycin,Protein, RAFT-1,Protein, mTOR,RAFT 1 Protein,Rapamycin Protein Target,Serine-Threonine Kinase, TOR,Serine-Threonine Kinase, mTOR,Serine-Threonine Kinases, TOR,Serine-Threonine Kinases, mTOR,TOR Serine Threonine Kinase,TOR Serine Threonine Kinases,mTOR Serine Threonine Kinase,mTOR Serine Threonine Kinases

Related Publications

Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
December 2010, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
January 2011, Current medicinal chemistry,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
May 2020, Cancers,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
December 1999, Biochemical and biophysical research communications,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
September 2023, World journal of gastrointestinal oncology,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
September 2010, Biochimica et biophysica acta,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
May 2010, Histology and histopathology,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
April 2015, Translational lung cancer research,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
August 2010, Cancers,
Upasana Shukla, and Nithin Tumma, and Theresa Gratsch, and Alan Dombkowski, and Raymond F Novak
October 2018, Journal of cellular physiology,
Copied contents to your clipboard!