Characterization of the effects of direct alkylators on in vitro immune responses. 1990

H G Haggerty, and B S Kim, and M P Holsapple
Department of Pharmacology and Toxicology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298.

Although their mechanism of degradation may differ, both the SN1 alkylators, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-nitroso-N-methylurea (MNU), and the SN2 alkylators, dimethyl sulfate (DMS) and methyl methanesulfonate (MMS), spontaneously decompose under aqueous conditions to the methyldiazonium ion or a direct methylating intermediate, respectively. Thus, these agents serve as useful probes to investigate the immunosuppressive potential of the putative primary reactive intermediate of dimethylnitrosamine (DMN) metabolism, the methyldiazonium ion. The effects of these direct alkylating agents on the in vitro immune response were characterized. Direct addition of both the SN1 and SN2 alkylators to naive B6C3F1 murine splenocytes produced a dose-dependent suppression of the in vitro antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocytes (sRBC), T-independent antigen, dinitrophenyl (DNP)-Ficoll, and the polyclonal activator, lipopolysaccharide (LPS). The T-dependent and T-independent responses proved to be more sensitive than the polyclonal response to the effects of these compounds, except for MNNG in which all 3 antibody responses were equally affected. The suppression of the AFC response for all antigens was unaffected by the addition of 2-ME, and was observed at concentrations below those affecting viability, although at the highest concentrations an effect on viability was often observed. The addition of MNNG to the T-dependent AFC response at any time within the first 96 h produced a marked suppression, while the addition of DMS to cultures was only effective in suppressing the AFC response if added within the first 24 h. MNNG and DMS suppressed the proliferative responses to both B-cell (LPS) and T-cell (Concanavalin A; Con A) mitogens, as well as in the mixed lymphocyte response (MLR). In addition, a positive correlation between immunosuppression and DNA damage, as measured by single-strand breaks, was observed. Although these compounds produced suppression of in vitro immune responses, their profile of activity on immunocompetence and DNA damage was different from that associated with DMN and thus, the direct alkylators may not prove to be useful models to elucidate the mechanism of the DMN-induced immunosuppression.

UI MeSH Term Description Entries
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004128 Dimethylnitrosamine A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. It causes serious liver damage and is a hepatocarcinogen in rodents. Nitrosodimethylamine,N-Nitrosodimethylamine,NDMA Nitrosodimethylamine,N Nitrosodimethylamine,Nitrosodimethylamine, NDMA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA

Related Publications

H G Haggerty, and B S Kim, and M P Holsapple
June 1978, Journal of immunology (Baltimore, Md. : 1950),
H G Haggerty, and B S Kim, and M P Holsapple
November 1993, Scandinavian journal of immunology,
H G Haggerty, and B S Kim, and M P Holsapple
June 1977, Immunology,
H G Haggerty, and B S Kim, and M P Holsapple
January 1983, International journal of immunopharmacology,
H G Haggerty, and B S Kim, and M P Holsapple
November 2017, Endocrine, metabolic & immune disorders drug targets,
H G Haggerty, and B S Kim, and M P Holsapple
November 1981, Cellular immunology,
H G Haggerty, and B S Kim, and M P Holsapple
June 1985, Japanese journal of cancer research : Gann,
H G Haggerty, and B S Kim, and M P Holsapple
March 1974, Cellular immunology,
H G Haggerty, and B S Kim, and M P Holsapple
August 1989, Journal of clinical periodontology,
H G Haggerty, and B S Kim, and M P Holsapple
September 1984, The Journal of experimental medicine,
Copied contents to your clipboard!