The effect of alloxan diabetes on the activity of some mixed function oxidases in male rats. 1990

A Nedjar, and T Stoytchev
Institute of Physiology, Bulgarian Academy of Sciences.

The effect of alloxan-induced diabetes on the duration of hexobarbital sleep (HB sleep) the activity of ethylmorphine-N-demethylase (EMND), aniline hydroxylase (AH), the content of microsomal cytochrome P-450 and b5, on the activity of ethoxycumarine-0-deethylase (ECOD) and ethoxyresorufine-0-deethylase (EROD) after induction with beta naphthoflavone (beta-NF), as well as the activity of benzphetamine-N-demethylase and pentoxyresorufine-O-dealkylase (PROD) after induction with phenobarbital (PB), was studied in experiments on male Wistar rats. In rats with alloxan diabetes there was a significant prolongation of HB sleep (by 106%) and inhibition of the liver EMND (by 54%), while the AH activity increased by 131%, with a parallel rise in the content of microsomal cytochromes P-450 (by 67%) and b5 (by 113%). In rats with alloxan diabetes the enzyme-inducing effect of beta-NF with respect to the activities of EROD and ECOD is reduced, although diabetes by itself causes a rise in the ECOD activity in untreated animals. When induced with PB, the PROD and benzphetamine-N-demethylase activity in diabetic rats is lower than in the healthy animals. However, if the enzyme activity after the application of inducers is referred to the respective starting enzyme activities of the two groups of animals, it is found that the enzyme-inducing effect of PB is preserved and even slightly potentiated in the diabetic rats compared with the healthy ones: the increases in the benzphetamine-N-demethylase activity is by 60% in the diabetic rats, compared with a rise of 28% in the healthy animals, of the PROD activity 19 times for the diabetic compared with 16 times increase for the healthy rats.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Nedjar, and T Stoytchev
January 1988, Medycyna pracy,
A Nedjar, and T Stoytchev
January 1980, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
A Nedjar, and T Stoytchev
August 2008, Indian journal of pharmacology,
A Nedjar, and T Stoytchev
January 1981, Drug metabolism and disposition: the biological fate of chemicals,
A Nedjar, and T Stoytchev
January 1988, Fiziologicheskii zhurnal,
A Nedjar, and T Stoytchev
November 1982, Die Pharmazie,
A Nedjar, and T Stoytchev
January 1979, Acta diabetologica latina,
A Nedjar, and T Stoytchev
November 1975, Archives internationales de pharmacodynamie et de therapie,
Copied contents to your clipboard!