Susceptibility to oxygen-glucose deprivation is reduced in acute hippocampal slices from euthermic Syrian golden hamsters relative to slices from Sprague-Dawley rats. 2013

John G Mielke
School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada. Electronic address: jgmielke@uwaterloo.ca.

Hibernation in mammals is characterised by a marked decrease in body temperature and a dramatic suppression of metabolism. In addition, despite experiencing a reduced cardiac output that would normally cause profound cerebral ischaemia, hibernating animals display robust neuroprotection. However, whether the reduced susceptibility to neural injury displayed by hibernators is attributable to an innate factor, or to the physiologic changes that accompany hibernation, remains uncertain. To help clarify the nature of the ischaemic tolerance displayed by hibernators, the current study examined hippocampal slices from rodents not capable of hibernation (rat) and rodents that could undergo hibernation (hamsters), but were active immediately prior to slice preparation. Slices from each species were subjected to oxygen-glucose deprivation (OGD; a commonly used in vitro model of ischaemia), and their viability examined after a recovery period. Although OGD reduced plasma membrane integrity in each species, rat-derived slices displayed a nearly threefold greater degree of effect. In addition, only slices harvested from rats showed reductions in synaptic mitochondrial function. While the improved ischaemic tolerance displayed by euthermic hamster brain slices maintained at a physiological temperature suggests an intrinsic, protection-related variable, the synaptic level of the GluN1 subunit (which is required to form functional NMDA receptors) was not found to be different between the two species. Further work is needed to improve understanding of the molecular mechanisms underlying the intrinsic injury tolerance of hibernator brain, which should help provide inspiration for new approaches to neuroprotection.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006605 Hibernation The dormant state in which some warm-blooded animal species pass the winter. It is characterized by narcosis and by sharp reduction in body temperature and metabolic activity and by a depression of vital signs. Hibernation, Artificial,Induced Hibernation,Artificial Hibernation,Artificial Hibernations,Hibernation, Induced,Hibernations,Induced Hibernations
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

John G Mielke
March 2004, Contemporary topics in laboratory animal science,
John G Mielke
February 1987, Fundamental and applied toxicology : official journal of the Society of Toxicology,
John G Mielke
January 1999, Drug metabolism and disposition: the biological fate of chemicals,
John G Mielke
December 1988, Biochemical and biophysical research communications,
Copied contents to your clipboard!