Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells. 2014

Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
The Second Clinical Hospital of JiLin University, Changchun, 130041, People's Republic of China.

Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011416 Complement Factor D A serum protein which is important in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. This enzyme cleaves the COMPLEMENT C3B-bound COMPLEMENT FACTOR B to form C3bBb which is ALTERNATIVE PATHWAY C3 CONVERTASE. Adipsin,C3 Convertase Activator,C3PA Convertase,Factor D,Properdin Factor D,28 kDa Protein, Adipocyte,C3 Proactivator Convertase,C3PAse,Complement Protein D,D Component of Complement,GBGase,Proactivator Convertase,Activator, C3 Convertase,Complement D Component,Convertase Activator, C3,Convertase, C3 Proactivator,Convertase, C3PA,Convertase, Proactivator,Factor D, Complement,Factor D, Properdin,Protein D, Complement
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D047495 PPAR gamma A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR ALPHA is important in regulation of GLUCOSE metabolism and CELL GROWTH PROCESSES. It is a target of THIAZOLIDINEDIONES for control of DIABETES MELLITUS. PPARgamma,PPARgamma2,PPARgamma3,Peroxisome Proliferator-Activated Receptor gamma,Thiazolidinedione Receptor,mPPARgamma1,mPPARgamma2,Peroxisome Proliferator Activated Receptor gamma,Receptor, Thiazolidinedione
D050156 Adipogenesis The differentiation of pre-adipocytes into mature ADIPOCYTES. Adipogeneses
D050556 Fatty Acid-Binding Proteins Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS. Fatty Acid-Binding Protein,Adipocyte Lipid Binding Protein,Adipocyte-Specific Fatty Acid-Binding Protein,Brain-Type Fatty Acid-Binding Protein,Cytosolic Lipid-Binding Proteins,Fatty Acid-Binding Protein, Cardiac Myocyte,Fatty Acid-Binding Protein, Myocardial,Fatty Acid-Binding Proteins, Adipocyte-Specific,Fatty Acid-Binding Proteins, Brain-Specific,Fatty Acid-Binding Proteins, Cytosolic-Specific,Fatty Acid-Binding Proteins, Intestinal-Specific,Fatty Acid-Binding Proteins, Liver-Specific,Fatty Acid-Binding Proteins, Myocardial-Specific,Fatty Acid-Binding Proteins, Plasma-Membrane Specific,Intestinal Fatty Acid-Binding Protein,Liver Fatty Acid-Binding Protein,Myocardial Fatty Acid-Binding Protein,Plasma Membrane Fatty Acid-Binding Protein,Acid-Binding Protein, Fatty,Adipocyte Specific Fatty Acid Binding Protein,Brain Type Fatty Acid Binding Protein,Cytosolic Lipid Binding Proteins,Fatty Acid Binding Protein,Fatty Acid Binding Protein, Cardiac Myocyte,Fatty Acid Binding Protein, Myocardial,Fatty Acid Binding Proteins,Fatty Acid Binding Proteins, Adipocyte Specific,Fatty Acid Binding Proteins, Brain Specific,Fatty Acid Binding Proteins, Cytosolic Specific,Fatty Acid Binding Proteins, Intestinal Specific,Fatty Acid Binding Proteins, Liver Specific,Fatty Acid Binding Proteins, Myocardial Specific,Fatty Acid Binding Proteins, Plasma Membrane Specific,Intestinal Fatty Acid Binding Protein,Lipid-Binding Proteins, Cytosolic,Liver Fatty Acid Binding Protein,Myocardial Fatty Acid Binding Protein,Plasma Membrane Fatty Acid Binding Protein,Protein, Fatty Acid-Binding

Related Publications

Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
September 2013, Toxicology in vitro : an international journal published in association with BIBRA,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
December 2022, International journal of molecular sciences,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
October 2008, Biochemical and biophysical research communications,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
April 2012, Journal of genetics and genomics = Yi chuan xue bao,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
November 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
November 1989, Molecular and cellular biology,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
March 2015, Prostaglandins, leukotrienes, and essential fatty acids,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
June 2023, The Chinese journal of dental research,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
January 2008, In vitro cellular & developmental biology. Animal,
Zheng-Wei Li, and Cheng-dong Piao, and Hong-hui Sun, and Xian-Sheng Ren, and Yun-Shen Bai
January 2014, Molecular and cellular biochemistry,
Copied contents to your clipboard!