Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase. 2013

Rahul Purohit, and Andrzej Weichsel, and William R Montfort
Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721.

Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ≈ 150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006162 Guanylate Cyclase An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071756 Soluble Guanylyl Cyclase A mammalian enzyme composed of a heterodimer of alpha and beta subunits. Each subunit consists of four domains; N-terminal HNOX domain, PAS-like domain, a coiled-coil domain, and a C-terminal catalytic domain. All four domains are homologous proteins with a similar conformation of functional domains. Soluble guanylate cyclase catalyzes the formation of cyclic GMP from GTP, and is a key enzyme of the nitric oxide signaling pathway involved in the regulation of a variety of biological and physiological processes in mammals. Nitric Oxide Receptor,Nitric Oxide Receptors,Nitric Oxide-Sensitive Guanylyl Cyclase,Receptor, Nitric Oxide,Soluble Guanylate Cyclase,Soluble Guanylyl Cyclase, alpha Subunit,Soluble Guanylyl Cyclase, beta Subunit,Cyclase, Soluble Guanylate,Cyclase, Soluble Guanylyl,Guanylate Cyclase, Soluble,Guanylyl Cyclase, Soluble,Nitric Oxide Sensitive Guanylyl Cyclase,Oxide Receptor, Nitric,Oxide Receptors, Nitric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

Rahul Purohit, and Andrzej Weichsel, and William R Montfort
January 2008, The Journal of biological chemistry,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
January 2010, BMC structural biology,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
July 2018, Nitric oxide : biology and chemistry,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
July 1998, Brain research,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
October 2008, Proceedings of the National Academy of Sciences of the United States of America,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
January 1999, Reviews of physiology, biochemistry and pharmacology,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
December 2000, Biochimica et biophysica acta,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
December 1996, Brain research. Developmental brain research,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
January 2000, Nihon rinsho. Japanese journal of clinical medicine,
Rahul Purohit, and Andrzej Weichsel, and William R Montfort
October 2007, Cardiovascular research,
Copied contents to your clipboard!