Characterization of the transcriptional activity of the basic helix-loop-helix (bHLH) transcription factor Atoh8. 2013

Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
Diabetes and Obesity Research Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.

The atonal-related Neurogenin/NeuroD family of basic helix-loop-helix (bHLH) transcription factors comprises potent inducers of neuronal and endocrine differentiation programs in the nervous and digestive system. Atonal homolog 8 (Atoh8) displays high similarity in the bHLH domain with NeuroD proteins. Yet, available evidences indicate that Atoh8 has distinctive features including a ubiquitous expression pattern in embryonic tissues and the ability to inhibit differentiation. To gain insights into Atoh8 function, we aimed at identifying Atoh8 targets and investigated the effects of Atoh8 on global gene expression patterns in pancreatic mPAC cells, a model of bHLH-dependent endocrine differentiation. Our data reveal that Atoh8 is a weak transcriptional activator and does not exhibit proendocrine activity. Conversely, it blocks the induction of a reduced group of gene targets of the atonal-related proendocrine factor Neurogenin3. We show that Atoh8 lacks a transactivation domain and possesses intrinsic repressor activity that depends on a conserved Proline-rich domain. Atoh8 binds the ubiquitous E protein E47 and its ability to repress transcription may partly result from its ability to inhibit E47/E47 and Neurogenin3/E47 dimer activities. These results reveal distinctive transcriptional properties of Atoh8 within the atonal-related bHLH family that may be associated with the acquisition of new biological functions.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051792 Basic Helix-Loop-Helix Transcription Factors A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF. Basic Helix-Loop-Helix Transcription Factor,bHLH Protein,bHLH Transcription Factor,bHLH Proteins,bHLH Transcription Factors,Basic Helix Loop Helix Transcription Factor,Basic Helix Loop Helix Transcription Factors,Factor, bHLH Transcription,Protein, bHLH,Transcription Factor, bHLH,Transcription Factors, bHLH
D060888 Real-Time Polymerase Chain Reaction Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction. Kinetic Polymerase Chain Reaction,Quantitative Real-Time PCR,Quantitative Real-Time Polymerase Chain Reaction,Real-Time PCR,PCR, Quantitative Real-Time,PCR, Real-Time,PCRs, Quantitative Real-Time,PCRs, Real-Time,Quantitative Real Time PCR,Quantitative Real Time Polymerase Chain Reaction,Quantitative Real-Time PCRs,Real Time PCR,Real Time Polymerase Chain Reaction,Real-Time PCR, Quantitative,Real-Time PCRs,Real-Time PCRs, Quantitative
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
October 2016, Physiologia plantarum,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
February 2008, Genes to cells : devoted to molecular & cellular mechanisms,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
October 2018, BMC plant biology,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
November 2009, Molecules and cells,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
January 2010, International journal of data mining and bioinformatics,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
December 2014, Biochemical and biophysical research communications,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
October 2008, Exercise and sport sciences reviews,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
April 2010, Genes to cells : devoted to molecular & cellular mechanisms,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
August 2003, The Plant cell,
Miriam Ejarque, and Jordi Altirriba, and Ramon Gomis, and Rosa Gasa
March 1998, The EMBO journal,
Copied contents to your clipboard!