Alternating current voltammetric determination of DNA damage. 1990

D Krznarić, and B Cosović, and J Stüber, and R K Zahn
Center for Marine Research Zagreb, Ruder Bosković Institute, Yugoslavia.

The conditions for alternating current (a.c.) voltammetric DNA determinations have been investigated with respect to its use with alkaline filter elution techniques at low DNA concentrations. In inorganic electrolyte solutions three current peaks can be distinguished: peak I around -1.1 V caused by the reorientation or desorption of DNA segments; peak II around -1.2 V caused by the native DNA (nDNA) form; peak III caused by denatured DNA (dDNA) at -1.4 V. Sonication of nDNA increases the peak current, however not with dDNA. Both dDNA and nDNA give linear peak current increments with DNA increments, their regression lines cutting the concentration axis at the origin. In filter elution techniques organic bases are often used. Adding ethanolamine (EA) elution buffer decreases the peak amplitude of DNA. It turns out that an unknown substance, perhaps a protein or RNA, elutes from the filters and gives rise to a current peak at about -1.3 V. This substance can interfere with the dDNA by competing for electrode surface area, since it diffuses much faster than the large molecules of the DNA. Since however, dDNA has a higher affinity for the electrode surface, after enough time, usually few minutes, the dDNA increasingly displaces the substance and occupies the surface. The same is valid for other organic molecules and thus also for EA. It is therefore remarkable that the unknown substance can be altered by ultrasonication, so that it will no longer interfere with dDNA, in contrast to EA. EA, on the other hand, can be "titrated". When EA is present at short accumulation times it prevents dDNA adsorption. By adding dDNA, the EA can be scavanged and further addition will adsorb and thus increase peak current in proportion to the concentration of the DNA present. The conditions for voltammetric DNA determination have been investigated obeying the recognized interactions. Avoiding organic bases and using inorganic ones would simplify the determination procedure. The reproducibility of the procedure in the range of 50-60 ng DNA/ml has been found to be +/- 6%.

UI MeSH Term Description Entries
D008297 Male Males
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012616 Sea Cucumbers A class of Echinodermata characterized by long, slender bodies. Holothuroidea,Cucumber, Sea,Cucumbers, Sea,Holothuroideas,Sea Cucumber
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

D Krznarić, and B Cosović, and J Stüber, and R K Zahn
August 2006, Analytical biochemistry,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
October 2010, Biosensors & bioelectronics,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
September 2004, Analytical biochemistry,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
March 2008, International journal of molecular sciences,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
May 1965, Journal of pharmaceutical sciences,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
January 1978, Analytical biochemistry,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
November 2007, Biosensors & bioelectronics,
D Krznarić, and B Cosović, and J Stüber, and R K Zahn
June 1999, Analytical biochemistry,
Copied contents to your clipboard!