Heart muscle: mathematical modelling of the mechanical activity and modelling of mechanochemical uncoupling. 1990

L B Katsnelson, and Izakov VYa, and V S Markhasin
Laboratory of Biophysics, Institute of Industrial Hygiene and Occupational Diseases, Sverdlovsk, USSR.

A mechanical model of heart muscle is proposed which includes rheological equations and equations for Ca-troponin interaction, for the dependences of the number of myosin cross-bridges on the length of sarcomere and on the speed of motion. The main assumption of the model is the dependence of the troponin affinity to calcium ions on the number of myosin cross-bridges attached. The model successfully imitates isometric and isotonic contractions, the "length-force" relationships, load-dependent relaxation, and the group of mechanical phenomena known as mechanochemical uncoupling.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D014336 Troponin One of the minor protein components of skeletal and cardiac muscles. It functions as the calcium-binding component in a complex with BETA-TROPOMYOSIN; ACTIN; and MYOSIN and confers calcium sensitivity to the cross-linked actin and myosin filaments. Troponin itself is a complex of three regulatory proteins (TROPONIN C; TROPONIN I; and TROPONIN T). Troponin Complex,Troponins

Related Publications

L B Katsnelson, and Izakov VYa, and V S Markhasin
July 1970, Journal of biomechanics,
L B Katsnelson, and Izakov VYa, and V S Markhasin
June 1994, Journal of molecular and cellular cardiology,
L B Katsnelson, and Izakov VYa, and V S Markhasin
January 1998, Progress in biophysics and molecular biology,
L B Katsnelson, and Izakov VYa, and V S Markhasin
April 2018, Chemical Society reviews,
L B Katsnelson, and Izakov VYa, and V S Markhasin
July 2020, Chemical communications (Cambridge, England),
L B Katsnelson, and Izakov VYa, and V S Markhasin
January 1987, Annals of biomedical engineering,
L B Katsnelson, and Izakov VYa, and V S Markhasin
April 2020, The Journal of physiology,
L B Katsnelson, and Izakov VYa, and V S Markhasin
January 2011, Progress in biophysics and molecular biology,
L B Katsnelson, and Izakov VYa, and V S Markhasin
June 1997, General physiology and biophysics,
Copied contents to your clipboard!