Caffeine and the myoplasmic calcium removal mechanisms in cut frog skeletal muscle fibres. 1990

L Csernoch, and L Kovács, and B Nilius, and G Szücs
Department of Physiology, University Medical School, Debrecen, Hungary.

Antipyrylazo III myoplasmic calcium transients were recorded in cut skeletal muscle fibres of the frog (Rana esculenta), using the double vaseline-gap voltage-clamp system. Intracellular calcium removal mechanisms were analysed, using a slightly modified model taken from the literature. Parameter values reported here are generally consistent with those obtained by the original model. Caffeine (0.5 mmol.l-1) moderately enhanced the overall myoplasmic calcium removal. In particular, the rate constant of the non-saturable uptake increased by 51% on the average, but there was a considerable fiber-to-fiber variation. The kinetic features of the binding sites representing the saturable uptake did not change significantly while the concentration of the available sites decreased by 36%. It is concluded that the caffeine-induced changes of the calcium removal components can be explained by supposing an increased resting myoplasmatic Ca2+ concentration in the presence of the drug.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

L Csernoch, and L Kovács, and B Nilius, and G Szücs
March 1986, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
June 1986, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
August 1983, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
February 1987, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
December 1989, The Journal of general physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
October 1982, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
June 1990, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
January 1989, Biomedica biochimica acta,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
August 1983, The Journal of physiology,
L Csernoch, and L Kovács, and B Nilius, and G Szücs
September 1988, The Journal of physiology,
Copied contents to your clipboard!