Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. 2013

Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia

BACKGROUND Retinal Müller cells exhibit the characteristics of retinal progenitor cells, and differentiate into ganglion cells under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to develop a novel protocol to promote the differentiation of retinal Müller cells into ganglion cells and explore the underlying signaling mechanisms. METHODS Müller cells were isolated and purified from rat retina and induced to dedifferentiate into retinal stem cells. Next the stem cells were transfected with lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP. In addition, the stem cells were transfected with Brn-3b siRNA or Isl-1 siRNA or treated with Notch inhibitor gamma-secretase inhibitor (GSI). RESULTS The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of controls. Knockdown of Brn-3b or Isl-1 inhibited, while GSI promoted, the differentiation into retinal ganglion cells. Atoh7 promoted the expression of Brn-3b and Isl-1 but inhibited the expression of Notch1. CONCLUSIONS Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells by inhibiting Notch signaling, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051792 Basic Helix-Loop-Helix Transcription Factors A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF. Basic Helix-Loop-Helix Transcription Factor,bHLH Protein,bHLH Transcription Factor,bHLH Proteins,bHLH Transcription Factors,Basic Helix Loop Helix Transcription Factor,Basic Helix Loop Helix Transcription Factors,Factor, bHLH Transcription,Protein, bHLH,Transcription Factor, bHLH,Transcription Factors, bHLH
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch

Related Publications

Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
March 2016, Cytotechnology,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
September 2023, In vitro cellular & developmental biology. Animal,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
January 2018, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
March 2011, Neuroreport,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
January 2019, Frontiers in cellular neuroscience,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
January 2018, Stem cells international,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
October 2023, Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences,
Wei-tao Song, and Xue-yong Zhang, and Xiao-bo Xia
February 2013, Development (Cambridge, England),
Copied contents to your clipboard!