Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. 1990

W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104.

The oxygen dependence of mitochondrial respiration was investigated using suspensions of mitochondria and quiescent ventricular myocytes isolated from adult rat hearts. A new optical method was used to determine oxygen concentration in the suspending media. The P50 for respiration for coupled mitochondria at a high [ATP]/[ADP].[Pi] ratio and oxidizing glutamate/malate was 0.45 +/- 0.03 microM but was increased to 0.57 +/- 0.02 microM by the addition of succinate to the substrate mixture. This value was decreased to less than 0.06 +/- 0.01 microM when the ATP/ADP.Pi ratio was decreased with the uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The P50 value in resting myocytes was 2.23 +/- 0.13 microM at a Vmax of 13.22 +/- 1.38 nmol of O2/g, dry weight/min. During resting conditions, the creatine phosphate/creatine and ATPfree/ADPfree ratios were high in these cells, 6.81 +/- 1.11 and 1131 +/- 185, respectively. Addition of 1 mM Ca2+ to the suspending media increased the P50 by 50% whereas respiration rose by only 10%. Respiratory rate was increased up to about 10-fold by uncoupling the cells, but the P50 increased by less than 3-fold. When these uncoupled cells were inhibited with Amytal to lower the rate of oxygen consumption to that of resting cells, the P50 fell to 1.25 +/- 0.14 microM. Diffusion models indicate that in resting myocytes, the oxygen concentration difference from sarcolemma to cell core was approximately 1.84 microM with an additional difference of about 0.27 microM attributed to the unstirred layer of media surrounding each cell. The intracellular oxygen diffusivity coefficient in myocytes was calculated to be 0.30 x 10(-5) cm2/s. The results show that the oxygen dependence of respiration is modulated by the cellular metabolic state. At near maximal levels of respiration or on recovery from hypoxic episodes, oxygen diffusion may become an important determinant of the oxygen dependence of myocardial respiration.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
March 1986, The American journal of physiology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
May 1981, Journal of molecular and cellular cardiology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
January 1983, Seikagaku. The Journal of Japanese Biochemical Society,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
November 2010, European journal of pharmacology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
April 1987, Journal of biochemistry,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
January 1985, Basic research in cardiology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
June 1985, The Journal of biological chemistry,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
November 2010, American journal of physiology. Heart and circulatory physiology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
December 1990, Journal of molecular and cellular cardiology,
W L Rumsey, and C Schlosser, and E M Nuutinen, and M Robiolio, and D F Wilson
September 1980, Life sciences,
Copied contents to your clipboard!