Role of ceramide as a lipid mediator of 1 alpha,25-dihydroxyvitamin D3-induced HL-60 cell differentiation. 1990

T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

The treatment of HL-60 myelocytic leukemia cells with 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) resulted in the activation of a neutral sphingomyelinase and in sphingomyelin turnover (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). In this paper, the effects of 1,25-(OH)2D3 on the product of sphingomyelin hydrolysis, ceramide, and the possible function of ceramide as a lipid mediator of the effects of 1,25-(OH)2D3 on HL-60 cell differentiation were investigated. Treatment of HL-60 cells with 1,25-(OH)2D3 resulted in a time- and dose-dependent increase in ceramide mass levels. Ceramide levels peaked at 2 h following treatment of HL-60 cells with 100 nM 1,25-(OH)2D3 with an increase of 41% over base line. The mass of generated ceramide (13 +/- 2 pmol/nmol of phospholipid) agreed with the mass of hydrolyzed sphingomyelin (17 +/- 4 pmol/nmol of phospholipid). Cell-permeable ceramides with shorter N-acyl chains induced HL-60 cell differentiation at subthreshold concentrations of 1,25-(OH)2D3. Higher concentrations of cell-permeable ceramides potently induced HL-60 cell differentiation independent of 1,25-(OH)2D3. A 2-h exposure of HL-60 cells to N-acetyl-sphingosine was sufficient to cause differentiation. Morphologically, N-acetylsphingosine caused a similar monocytic differentiation of HL-60 cells as did 1,25-(OH)2D3. Exogenous ceramide was further metabolized to sphingomyelin and other sphingolipids, but no conversion to sphingosine was detected. Moreover, sphingosine and its analogs failed to affect monocytic differentiation of HL-60 cells in response to subthreshold 1,25-(OH)2D3, indicating that the effect of ceramide was independent of sphingosine generation. These studies demonstrate that ceramide is a lipid mediator that may transduce the action of 1,25-(OH)2D3 on HL-60 cell differentiation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin

Related Publications

T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
April 1996, Blood,
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
April 1991, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
January 1995, Blood cells, molecules & diseases,
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
August 1985, Cancer research,
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
May 2010, Journal of leukocyte biology,
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
July 1989, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
T Okazaki, and A Bielawska, and R M Bell, and Y A Hannun
March 1997, Leukemia research,
Copied contents to your clipboard!