Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. 1990

T M Coimbra, and D A Cieslinski, and H D Humes
Department of Internal Medicine, Veterans Administration Medical Center, Ann Arbor, Michigan.

Repair and recovery of ischemic or nephrotoxic acute renal failure (ARF) are dependent upon renal tubule cell regeneration. Because epidermal growth factor (EGF) is a potent growth promoter to renal tubule cells, experiments were undertaken to assess the effects of exogenous administration of EGF during the recovery phase of HgCl2-induced ARF. Rats were administered HgCl2 (5 mg/kg sc), and [3H]thymidine incorporation into renal tissue and blood urea nitrogen (BUN) and serum creatinine concentrations were measured at various times after toxin administration. EGF (20 microgram) was administered subcutaneously 2 or 4 h after HgCl2 injection. Exogenous EGF resulted in greater levels of renal [3H]thymidine incorporation into renal proximal tubule cells compared with those observed in nontreated animals at several time points in the first 48 h after toxic injury. Morphometric analysis of histoautoradiograph sections of renal tissue demonstrated that greater than 96% of labeled cells were tubular in all examined sections. This EGF-related acceleration in DNA synthesis was associated with significantly lower peak BUN and serum creatinine levels, averaging 213 +/- 23 and 6.54 +/- 0.72 (SE) mg/dl, respectively, at 3 days in EGF-treated nephrotoxic rats compared with peak levels of 359 +/- 40 and 9.92 +/- 1.67 mg/dl (P less than 0.001, n = 7-16) at 5 days in non-EGF-treated nephrotoxic rats. EGF treatment also was associated with a return to near normal BUN and serum creatinine levels approximately 4 days earlier than that observed in non-EGF-treated animals. These findings demonstrate that exogenous EGF accelerates the repair process of the kidney after a severe toxic insult.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008627 Mercuric Chloride Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant. Mercury Dichloride,Corrosive Sublimate,HgCl2,Mercuric Perchloride,Mercury Bichloride,Mercury Perchloride,Sublimate,Bichloride, Mercury,Chloride, Mercuric,Dichloride, Mercury,Perchloride, Mercuric,Perchloride, Mercury,Sublimate, Corrosive
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001806 Blood Urea Nitrogen The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) BUN,Nitrogen, Blood Urea,Urea Nitrogen, Blood
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

T M Coimbra, and D A Cieslinski, and H D Humes
November 1992, The American journal of physiology,
T M Coimbra, and D A Cieslinski, and H D Humes
January 1987, Virchows Archiv. B, Cell pathology including molecular pathology,
T M Coimbra, and D A Cieslinski, and H D Humes
October 1989, Toxicology,
T M Coimbra, and D A Cieslinski, and H D Humes
November 1985, Proceedings of the National Academy of Sciences of the United States of America,
T M Coimbra, and D A Cieslinski, and H D Humes
January 1980, Nephron,
T M Coimbra, and D A Cieslinski, and H D Humes
January 1995, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
T M Coimbra, and D A Cieslinski, and H D Humes
January 1996, Journal of biochemical toxicology,
T M Coimbra, and D A Cieslinski, and H D Humes
January 1995, Archives of toxicology,
T M Coimbra, and D A Cieslinski, and H D Humes
August 1983, Experimental and molecular pathology,
Copied contents to your clipboard!