Bacterial community development in experimental gingivitis. 2013

James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
Microbiology Unit, King's College London Dental Institute, London, United Kingdom.

Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches to prevent periodontal disease.

UI MeSH Term Description Entries
D008297 Male Males
D003430 Cross-Sectional Studies Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time. Disease Frequency Surveys,Prevalence Studies,Analysis, Cross-Sectional,Cross Sectional Analysis,Cross-Sectional Survey,Surveys, Disease Frequency,Analyses, Cross Sectional,Analyses, Cross-Sectional,Analysis, Cross Sectional,Cross Sectional Analyses,Cross Sectional Studies,Cross Sectional Survey,Cross-Sectional Analyses,Cross-Sectional Analysis,Cross-Sectional Study,Cross-Sectional Surveys,Disease Frequency Survey,Prevalence Study,Studies, Cross-Sectional,Studies, Prevalence,Study, Cross-Sectional,Study, Prevalence,Survey, Cross-Sectional,Survey, Disease Frequency,Surveys, Cross-Sectional
D003773 Dental Plaque A film that attaches to teeth, often causing DENTAL CARIES and GINGIVITIS. It is composed of MUCINS, secreted from salivary glands, and microorganisms. Plaque, Dental
D005260 Female Females
D005891 Gingivitis Inflammation of gum tissue (GINGIVA) without loss of connective tissue. Gingivitides
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S

Related Publications

James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
December 1987, Journal of periodontology,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
September 2023, Research in veterinary science,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
March 1982, Aichi Gakuin Daigaku Shigakkai shi,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
January 1968, Arsbok. Goteborgs tandlakare-sallskap,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
January 1993, Nederlands tijdschrift voor tandheelkunde,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
May 1994, Journal of periodontal research,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
January 1968, Journal of periodontal research,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
August 1954, Journal of dental research,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
January 1965, The Journal of periodontology,
James O Kistler, and Veronica Booth, and David J Bradshaw, and William G Wade
November 1971, Journal of periodontology,
Copied contents to your clipboard!