Configuration of wobble base pairs having pyrimidines as anticodon wobble bases: significance for codon degeneracy. 2014

Gunajyoti Das, and R H Duncan Lyngdoh
a Department of Chemistry , North-Eastern Hill University , Shillong , 793022 , India .

Degeneracy of the genetic code was attributed by Crick to imprecise hydrogen-bonded base-pairing at the wobble position during codon-anticodon pairing. The Crick wobble rules define but do not explain the RNA base pair combinations allowed at this position. We select six pyrimidine bases functioning as anticodon wobble bases (AWBs) to study their H-bonded pairing properties with the four major RNA bases using density functional theory at the B3LYP/6-31G(d,p) level. This is done to assess the extent to which the configuration of a solitary RNA wobble base pair may in itself determine specificity and degeneracy of the genetic code by allowing or disallowing the given base pair during codon-anticodon pairing. Calculated values of select configuration markers for the base pairs screen well between allowed and disallowed base pairs for most cases examined here, where the base pair width emerges as an important factor. A few allowed wobble pairs invoke the involvement of RNA nucleoside conformation, as well as involvement of the exocyclic substituent in H-bonding. This study, however, cannot explain the disallowed status of the Ura⋯Gua wobble pair on the basis of configuration alone. Explanation of the allowed status of the V⋯Ura pair requires further study on the mediatory role of water molecules. Apart from these two cases, these computational results are sufficient, on the basis of base pair configuration alone, to account for the specificity and degeneracy of the genetic code for all known cases of codon-anticodon pairing which involve the pyrimidine AWBs studied here.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D020029 Base Pairing Pairing of purine and pyrimidine bases by HYDROGEN BONDING in double-stranded DNA or RNA. Base Pair,Base Pairs,Base Pairings

Related Publications

Gunajyoti Das, and R H Duncan Lyngdoh
January 2001, Indian journal of biochemistry & biophysics,
Gunajyoti Das, and R H Duncan Lyngdoh
August 1966, Journal of molecular biology,
Gunajyoti Das, and R H Duncan Lyngdoh
September 1981, Journal of theoretical biology,
Gunajyoti Das, and R H Duncan Lyngdoh
December 1976, Science (New York, N.Y.),
Gunajyoti Das, and R H Duncan Lyngdoh
January 2023, The journal of physical chemistry. A,
Gunajyoti Das, and R H Duncan Lyngdoh
January 2000, Nucleic acids symposium series,
Gunajyoti Das, and R H Duncan Lyngdoh
July 1970, Journal of theoretical biology,
Gunajyoti Das, and R H Duncan Lyngdoh
December 1984, European journal of biochemistry,
Gunajyoti Das, and R H Duncan Lyngdoh
January 2007, Nucleic acids research,
Gunajyoti Das, and R H Duncan Lyngdoh
September 2001, The EMBO journal,
Copied contents to your clipboard!