CCL5 and cytokine expression in the rat brain: differential modulation by chronic morphine and morphine withdrawal. 2013

Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
Department of Pharmacology and Physiology, Laboratory of Preclinical Neurobiology Georgetown University Medical Center, Washington DC 20057, United States.

Opioids have been shown to influence the immune system and to promote the expression of pro-inflammatory cytokines in the central nervous system. However, recent data have shown that activation of opioid receptors increases the expression and release of the neuroprotective chemokine CCL5 from astrocytes in vitro. To further define the interaction between CCL5 and inflammation in response to opioids, we have examined the effect of chronic morphine and morphine withdrawal on the in vivo expression of CCL5 as well as of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Rats undergoing a chronic morphine paradigm (10 mg/kg increasing to 30 mg/kg, twice a day for 5 days) showed a twofold increase of CCL5 protein and mRNA within the cortex and striatum. No changes were observed in the levels of IL-1β and TNF-α. Naltrexone blocked the effect of morphine. A chronic morphine paradigm with no escalating doses (10 mg/kg, twice a day) did not alter CCL5 levels compared to saline-treated animals. On the contrary, rats undergoing spontaneous morphine withdrawal exhibited lower levels of CCL5 within the cortex as well as increased levels of pro-inflammatory cytokines and Iba-1 positive cells than saline-treated rats. Overall, these data suggest that morphine withdrawal may promote cytokines and other inflammatory responses that have the potential of exacerbating neuronal damage.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013375 Substance Withdrawal Syndrome Physiological and psychological symptoms associated with withdrawal from the use of a drug after prolonged administration or habituation. The concept includes withdrawal from smoking or drinking, as well as withdrawal from an administered drug. Drug Withdrawal Symptoms,Withdrawal Symptoms,Drug Withdrawal Symptom,Substance Withdrawal Syndromes,Symptom, Drug Withdrawal,Symptom, Withdrawal,Symptoms, Drug Withdrawal,Symptoms, Withdrawal,Syndrome, Substance Withdrawal,Syndromes, Substance Withdrawal,Withdrawal Symptom,Withdrawal Symptom, Drug,Withdrawal Symptoms, Drug,Withdrawal Syndrome, Substance,Withdrawal Syndromes, Substance
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
October 2002, Neuropharmacology,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
February 1989, The Journal of pharmacology and experimental therapeutics,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
May 2006, Journal of neuroscience research,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
June 2004, Neurochemical research,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
September 1972, The Biochemical journal,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
December 2008, Neuropharmacology,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
October 1997, Neuroreport,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
December 1959, Nature,
Lee A Campbell, and Valeriya Avdoshina, and Summer Rozzi, and Italo Mocchetti
July 2002, Journal of leukocyte biology,
Copied contents to your clipboard!