Intermediates of peroxisomal beta-oxidation. A study of the fatty acyl-CoA esters which accumulate during peroxisomal beta-oxidation of [U-14C]hexadecanoate. 1990

K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
Department of Child Health, Medical School, University of Newcastle upon Tyne, U.K.

1. 14C-labelled fatty acyl-CoA esters resulting from beta-oxidation of [U-14C]hexadecanoate by peroxisomal fractions isolated from rats treated with clofibrate showed the presence of the full range of saturated intermediates down to acetyl-CoA. 2. The pattern of intermediates generated was fairly constant. At low concentrations of [U-14C]hexadecanoate (50 microM), decanoyl-CoA was present in lowest amounts. At higher concentrations of [U-14C]hexadecanoate (greater than 100 microM), all intermediates of chain length shorter than 12 carbon atoms (except acetyl-CoA) were present at similar low concentrations; the process of beta-oxidation now resembling chain-shortening of hexadecanoate by two cycles of beta-oxidation. 3. In the absence of an NAD(+)-regenerating system [pyruvate and lactate dehydrogenase (EC 1.1.1.28)] 2-enoyl- and 3-hydroxyacyl-CoA esters were generated, suggesting that re-oxidation of NADH is essential for optimal rates of peroxisomal beta-oxidation in vitro. 4. At high concentrations of [U-14C]hexadecanoate (greater than 100 microM), 3-oxohexadecanoyl-CoA was produced, suggesting that thiolase (acetyl-CoA acetyltransferase; EC 2.3.1.9) can become rate-limiting for peroxisomal beta-oxidation.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010169 Palmitic Acids A group of 16-carbon fatty acids that contain no double bonds. Acids, Palmitic
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
October 1995, Biochimica et biophysica acta,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
December 1989, Biochimica et biophysica acta,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
September 1987, Biochimica et biophysica acta,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
February 1991, Archives of biochemistry and biophysics,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
June 1980, Biochemical and biophysical research communications,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
November 1989, Archives of biochemistry and biophysics,
K Bartlett, and R Hovik, and S Eaton, and N J Watmough, and H Osmundsen
September 1990, Journal of biochemistry,
Copied contents to your clipboard!