Vanadate dimer and tetramer both inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. 1990

D C Crans, and S M Schelble
Department of Chemistry, Colorado State University, Fort Collins 80523.

Vanadate dimer and tetramer inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. The inhibition by a vanadate mixture containing vanadate monomer, dimer, tetramer, and pentamer was determined by measuring the rates of glucose 6-phosphate oxidation and reduction of NAD (or NADP) catalyzed by glucose-6-phosphate dehydrogenase. The inhibition by vanadate is competitive with respect to NAD or NADP and noncompetitive (a mixed type) with respect to glucose 6-phosphate (G6P) when NAD or NADP are cofactors. This inhibition pattern varies from that observed with phosphate and thus suggests vanadate interacts differently than a phosphate analogue with the enzyme. 51V NMR spectroscopy was used to directly correlate the inhibition of vanadate solutions to the vanadate dimer and/or tetramer, respectively. The activity of the vanadate oligomer varied depending on the cofactor and which substrate was being varied. The vanadate dimer was the major inhibiting species with respect to NADP. This is in contrast to the vanadate tetramer, which was the major inhibiting species with respect to G6P and with respect to NAD. The inhibition by vanadate when G6P was varied was weak. The competitive inhibition pattern with respect to NAD and NADP suggests the possibility that vanadate oligomers may also inhibit catalysis of other NAD- or NADP-requiring dehydrogenases. Significant concentrations of vanadate dimer and tetramer are only found at fairly high vanadate concentrations, so these species are not likely to represent vanadium species present under normal physiological conditions. It is however possible the vanadate dimer and/or tetramer represent toxic vanadate species.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007934 Leuconostoc A genus of gram-positive, facultatively anaerobic bacteria whose growth is dependent on the presence of a fermentable carbohydrate. It is nonpathogenic to plants and animals, including humans. Leukonostoc
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D005958 Glucosephosphates
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D019298 Glucose-6-Phosphate An ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed) Glucose 6 Phosphate

Related Publications

D C Crans, and S M Schelble
April 1989, Biochemical Society transactions,
D C Crans, and S M Schelble
January 1975, Methods in enzymology,
D C Crans, and S M Schelble
April 1971, The Journal of biological chemistry,
D C Crans, and S M Schelble
July 1953, Journal of bacteriology,
D C Crans, and S M Schelble
July 1988, Archives of biochemistry and biophysics,
D C Crans, and S M Schelble
January 1975, European journal of biochemistry,
D C Crans, and S M Schelble
August 1974, Biochemical and biophysical research communications,
Copied contents to your clipboard!