Neurospora crassa invertase. A study of amino acids at the active center. 1975

C H Bigger, and H D Braymer

1. The effects on Neurospora crassa invertase (beta-D-fructofuranoside fructohydrolase, EC 3.2.1.26) of a variety of group specific reagnets and other potential inhibitors were determined during a search for an irreversible inhibitor of the enzyme. Aniline, pyridoxal, enzyme substrate and products did not inactivate invertase under reducing conditions. Bromoacetic acid, iodoacetic acid, iodoacetamide, p-chloromercuribenzoate, hydroxylamine and 2-hydroxy-5-nitrobenzyl bromide were also ineffective. Iodine was the only reagent which irreversibly inhibited invertase. 2. Invertase was rapidly inactivated by low concentrations of iodine, indicating specific inhibition. However, the enzyme could not be protected from this inactivation by substrate. It was not reactivated by mercaptoethanol or cysteine. 3. Experiments on the uptake of radioactive iodine demonstrated that invertase is not iodinated under the conditions of iodine inactivation. 4. The sedimentation (S20,w) value of invertase was not altered by iodine inactivation. One-dimensional electrophoresis and finger-printing of tryptic digests revealed no differences between iodine treated and untreated invertase. There was no loss of carbohydrate from this glycoprotein during iodine inactivation. 5. Standard amino acid analyses of iodine-inactivated invertase showed some loss of tyrosine and a trace amount of methionine sulfone. Attempts to demonstrate oxidation of methionine to the sulfone, through modification of the procedure for preparation of samples for analysis, were unsuccessful. However, oxidation of half-cystine was indicated and further loss of tyrosine noted. A hypothesis is advanced that half-cystine is oxidized by iodine to a normally unstable oxidation state which is maintained and protected by its protein invironment and that loss of tyrosine may be an artifact caused by the presence of this residue during acid hydrolysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009491 Neurospora A genus of ascomycetous fungi, family Sordariaceae, order SORDARIALES, comprising bread molds. They are capable of converting tryptophan to nicotinic acid and are used extensively in genetic and enzyme research. (Dorland, 27th ed) Neurosporas
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002729 Chloromercuribenzoates Chloride and mercury-containing derivatives of benzoic acid.
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013393 Sucrase Digestive enzyme secreted in the INTESTINES. It catalyzes hydrolysis of SUCROSE to FRUCTOSE and GLUCOSE. Mutansucrase,Sucrose alpha-D-Glucohydrolase,Sucrose alpha D Glucohydrolase,alpha-D-Glucohydrolase, Sucrose

Related Publications

C H Bigger, and H D Braymer
July 1973, Journal of bacteriology,
C H Bigger, and H D Braymer
April 1950, American journal of pharmacy and the sciences supporting public health,
C H Bigger, and H D Braymer
August 1964, Biochimica et biophysica acta,
C H Bigger, and H D Braymer
March 1977, Canadian journal of biochemistry,
C H Bigger, and H D Braymer
September 1972, Canadian journal of biochemistry,
C H Bigger, and H D Braymer
March 1971, Indian journal of biochemistry,
C H Bigger, and H D Braymer
July 1975, Journal of general microbiology,
C H Bigger, and H D Braymer
April 1963, Journal of bacteriology,
Copied contents to your clipboard!